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Introduction



Introduction 2024 Rio Grande do Sul floods

https://rapidmapping.emergency.copernicus.eu/EMSR720/reporting

Extreme rainfall in April-May
Caused landslides and 
flooding

181 dead
809+ injured
580,000 displaced

$3.7 billion damages
500,000 people without power 
or clean water 

BBC Brasil

BBC Brasil

Porte Alegre flooded, Wikipedia

CMS Rapid Mapping + Aqueduct 100-yr flood

Flood defence deterioration
and poor land-use policies
contributed to damage extent

https://rapidmapping.emergency.copernicus.eu/EMSR720/reporting
https://en.wikipedia.org/wiki/File:05.05.2024_-_Sobrevoo_das_%C3%A1reas_afetadas_pelas_chuvas_em_Canoas_-_53700500641.jpg


Hazard Modelling Fundamentals



Hazard Modelling Fundamentals Core objectives vs climate modelling

Physical processes and Earth 
System dynamics

Extreme events and their 
impacts

Scientists and policymakers
Insurers, engineers, 

governments

Decades to centuries Event-based or probabilities

Scientific accuracy and 
completeness

Practical utility and loss 
estimation

Focus

Key Users

Timeframe

Priority

Climate Modelling Hazard modelling



Hazard Modelling Fundamentals Key stakeholders

Government
Probability, severity, and 

locations of potential 
damages and losses

Emergency Services
Expected event severities 

and worst case 
scenarios NGOs

Hotspots for adaptation

Insurers
Statistics of potential 

losses



Hazard Modelling Fundamentals Key terms and concepts

Return period

Risk profile/curve

Event footprint

Hazard map



Hazard Modelling Fundamentals Key terms and concepts

Return period

Risk profile/curve

Event footprint

Hazard map

Lamb, R., Keef, C., Tawn, J., Laeger, S., Meadowcroft, I., Surendran, S., ... & Batstone, 

C. (2010). A new method to assess the risk of local and widespread flooding on rivers 

and coasts. Journal of Flood Risk Management, 3(4), 323-336.



Hazard Modelling Fundamentals Key terms and concepts

Return period

Risk profile

Event footprint

Hazard map



Hazard Modelling Fundamentals Key terms and concepts

Return period

Risk profile

Event footprint

Hazard map

Steptoe, H., & Economou, T. (2021). Extreme wind return periods from tropical cyclones in 

Bangladesh: insights from a high-resolution convection-permitting numerical model. Natural Hazards 

and Earth System Sciences, 21(4), 1313-1322.



Hazard Mapping and Catastrophe Modelling



Mapping and Catastrophe Modelling Hazard maps

CMS Rapid Mapping + Aqueduct 100-yr flood

Probabilistic: one map per return period

Lightweight and efficient

Easy to interpret

No compound effects

Features

Univariate

Spatial independence

Atemporal



Compound Hazards When hazards intersect 

Preconditioned

Multivariate

Zscheischler et al. (2020) A typology of compound weather and climate events

Temporal

Spatial



Compound Hazards When hazards intersect 

https://rapidmapping.emergency.copernicus.eu/EMSR720/reporting

Extreme rainfall in April-May
Caused landslides and 
flooding

181 dead
809+ injured
580,000 displaced

$3.7 billion damages
500,000 people without power 
or clean water 

Flood defence deterioration
and poor land-use policies
contributed to damage extent

https://rapidmapping.emergency.copernicus.eu/EMSR720/reporting


Mapping and Catastrophe Modelling Catastrophe model

Portfolio of 1000s of events

Modelling is expensive

Numerical, stochastic, or hybrid simulations

Calculate statistics over losses from entire 
portfolio

Multivariate or region events

Features



Mapping and Catastrophe Modelling Summary

One event map per return 
period

Thousands of possible event 
footprints

Medium High

High Low

Format

Memory and 
compute

Ease of use

Compound 
events

Hazard maps Catastrophe models

No Potentially

At every point Over final losses
Calculate 
statistics



Deep Learning Applications



Feasible studies

Infeasible studies: limited 
by computational 

constraints

Introduction Relevance to ML researchers

Model scale
● Spatial range
● Temporal range
● Number of variables

Model sophistication
● Less approximations 

made
● Relationships 

accounted for

Feasible studies

Infeasible studies: limited 
by computational 

constraints

Feasible studies with ML



Deep Learning Applications Key research directions

● Before modelling
○ Parameterizing

○ Equation discovery

● Modelling
○ Surrogates

○ Sub models

○ PINNs/hybrid models

● After modelling
○ Bias correction

○ Downscaling

● Bypass modelling
○ Event sampling

Model scale
● Spatial scale
● Temporal scale
● Number of variables

Model sophistication
● Fewer 

approximations
● Interdependencies

Feasible studies with 
ML



Deep Learning Applications Differentiable parameter learning (dPL)

● LSTM Surrogate hydrological 
model

○ gradient tracking
● Optimise for parameters which 

minimise model error

● Better physical coherence
● Improves data scaling
● Outperforms in classic methods
● Soil moisture and streamflow

Tsai, W. P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., ... & Shen, C. (2021). From calibration to parameter learning: 

Harnessing the scaling effects of big data in geoscientific modeling. Nature communications, 12(1), 5988.



Deep Learning Applications FNO flood model

Sun, A. Y., Li, Z., Lee, W., Huang, Q., Scanlon, B. R., & Dawson, C. (2023). Rapid flood inundation forecast using Fourier neural 
operator. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3733-3739)

● Efficient
● Zero-shot resolution -

learns in Fourier 
space

● Doesn’t need to be 
retrained for 
parameter changes

d04_pred_20190917.mp4

http://drive.google.com/file/d/1HLkenRvRmiWdeqN0hDVX_0THKr3XcI0n/view


Deep Learning Applications Post-processing precipitation forecasts

● Conditional GAN
● Condition on forecast and related 

variable (orography)
● Downscale to higher resolution

Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., & Palmer, T. N. (2022). A generative deep 

learning approach to stochastic downscaling of precipitation forecasts. Journal of Advances in 

Modeling Earth Systems, 14(10), e2022MS003120.



Deep Learning Applications Event sampling

Peard, A., & Hall, J. (2023). Combining deep generative models with extreme value theory for synthetic 

hazard simulation: a multivariate and spatially coherent approach. arXiv preprint arXiv:2311.18521.

Training data Generated samples



Conclusion and Future Directions



Conclusion and Future Directions Recap

1. Hazard modelling generates actionable insights

2. Two main types of hazard modelling
a. Probabilistic hazard maps

b. Cat (event-based) modelling

3. ML can increase scale and complexity of hazard modelling
a. Compound events

b. Larger scales

c. Higher resolution

4. Many interesting areas for improvement



Thanks for listening!
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