
Appendix A

Community detection

A.1 Spectral methods

A.1.1 Spectral methods

For a bipartition of a network into gi 2 {0, 1}, it can be shown [26, 35], that optimising

the modularity (1.3) is equivalent to optimising the quantity Qs =
1

4ms>Bs, where

si =

(
+1 if gi = 0

�1 if gi = 1

and B is the modularity matrix B = A� �Â. Let the eigenvalues �i of B and their

corresponding eigenvectors ui be ordered according to �1 � �2 � . . .. The leading

eigenvector u1 of B will give the maximum possible value of v>Bv for all real-valued

v 2 R. Choosing s such that
(
si = +1 if vi > 0,

si = �1 if vi < 0

gives the maximum value of Qs for a bipartition of the network. The value of si for

ui = 0 is then chosen from {±1} to maximise Qs. This is the simplest form of spectral

partitioning.

For this dissertation, we optimise the modularity using the spectral bi- and tri-

partitioning methods developed by Richardson, Mucha, and Porter [35]:

Spectral bipartitioning of a network The classical spectral partitioning algo-

rithm successively bipartitions the network into smaller and smaller subdivisions until

no further improvement in modularity are achieved [35]. For a bipartition of a net-

work into gi 2 {0, 1}, it can be shown [26, 35], that optimising the modularity (1.3)
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is equivalent to optimising the quantity Qs =
1

4ms>Bs, where

si =

(
+1 if gi = 0

�1 if gi = 1

and B is the modularity matrix B = A� �hAi. Let the eigenvalues �i of B and their

corresponding eigenvectors ui be ordered according to �1 � �2 � . . .. The leading

eigenvector u1 of B will give the maximum possible value of v>Bv for all real-valued

v 2 R. Choosing s such that
(
si = +1 if vi > 0,

si = �1 if vi < 0

gives the maximum value of Qs for a bipartition of the network. The value of si

for ui = 0 is then chosen from {±1} to maximise Qs. This is the simplest form of

spectral partitioning. In order to incorporate information from multiple eigenvectors,

the p-eigenvector approach can be used [35]. A set of n node vectors are defined

according to

[ri]j =
p

�j � �nUij

where �j is the eigenvalue corresponding to eigenvector uj and U =
�
u1 u2 . . .

�

Then the modularity may be approximated by

Q ⇡ Q̃ = n�n +
kX

i=1

|RGi |
2,

where there are k communities andRG =
P

gi2G ri. If vi is inG then ri andRG cannot

be more than 90 degrees apart so RG · ri > 0. We also require that the communities

are more than 90 degrees apart, so RGRG0 < 0 for all G 6= G0. This means that

in a p-dimensional space, there can be at most (p + 1) communities. To perform a

bipartition of the node vector space that optimises the modularity one simply needs to

find the codimension-one hyperplane (passing through the origin) which best bisects

the vector space. Once again, this algorithm can be applied recursively to divide the

network into an even number of successively smaller parititons.

Because spectral bipartitioning only considers bipartitions of a network, partitions

with odd numbers of groups will not be considered. Thus the optimal partition may

be missed. Richardson et al. propose a spectral tri -partitioning algorithm in [35]

which at each iteration considers a subdivision of the network into three groups.
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(a) (b)

Figure A.1: Spectral bi-partitioning (a) and tri-partitioning (b). Source: [35].

A.2 Classical community detection results

In Section 1.3.2 of the main text we explored the results of classical community

detection applied to the 2019 maritime shipping network with resolution parameter

� = 0.2. In this section we include some results for this method applied to the 2019

and 2020 networks for � 2 {0.1, 0.2, 0.3, 0.5, 0.8}.

A.2.1 The maritime shipping network

In Figures A.2-A.6, we show the results obtained by optimising the Newman-Girvan

modularity for a variety of resolution parameters. Setting the resolution parameter

� = 1.0 yielded 16 communities in both the 2019 and 2020 networks. In Figure A.2,

we show the adjacency matrices for � = 1.0, with nodes grouped by community and

ordered by degree within communities. For � less than 0.1, most ports were grouped

into one large community.

Ports are plotted in their spatial locations and coloured according to their grouping

in Figures A.3-A.6 with the three ports with the highest degree, Shanghai, Singapore,

and Pusan (South Korea) indicated. As the resolution parameter decreases from 0.8

to 0.1 larger groups aggregate and smaller groups are absorbed into bigger groups.

For most resolutions, we see groups dominated by either Asian, European, or North

and South American groups. Ports in the Pacific Ocean and a cluster of around 30

South American ports are frequently separated from the major communities. For

resolutions � = 0.5 and � = 0.8 in the 2020 network, London, U.K. is grouped with

this group of South American ports, and San Francisco, U.S.A. is grouped with 17

Pacific Island ports. The partition of the larger groups remains relatively consistent
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across resolutions 0.3  �  0.8 while the di↵erent smaller groupings tend to be

isolated at di↵erent resolutions. This suggests that several node groups are not as

strongly connected to their communities as others. In the adjacency matrices in

Figure A.2, there is an indication of core-periphery structures within groups. Nodes

in the top-left of each square appear more densely connected than the rest of the

group, resembling a core-like structure.

(a) 2019, � = 1.0 (b) 2020, � = 1.0

Figure A.2: Adjacency matrices showing nodes ordered first by grouping, then by
degree within a grouping. The colourbars below and to the right of each figure
indicate community assignment while black dots indicate the presence of an edge and
white space indicates the absence of an edge. Note that group numbers are arbitrary

so the ordering of groups in these adjacency matrices is meaningless.

Resolution � = 0.8 In 2019, 13 communities were found with 88% of ports divided

into six major groups, while in 2020, 11 communities were found with 91% divided

between five major groups. In both years, a group consisting primarily of Northern

European and U.K. ports, a group of North and South American ports, a group

consisting primarily of Middle Eastern, Asian and African ports, an Asian group

dominated by Japanese and Chinese ports, and a group of mostly Mediterranean

and Northwest African ports were isolated. In 2019, a group consisting of largely

Southeast Asian ports was also identified. The smaller groups identified were less

consistent. In 2019, a smaller group of 31 South American ports was identified, as

well as 26 ports predominantly from Oceania. A group of six Pacific Island ports and

four Australian ports is also isolated from the larger structure. The four Indonesian

ports of Cirebon, Tanah Merah, Pelabuhan Ratu Coal Power Plant and Probolinggo
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were grouped together. Three ports from Samoa and Tonga are separated into one

group, as well as a group of four Chinese ports and a group of only the two Indonesian

ports of Waingapu and Ende. In 2020, there were two groups of size 18, the first

consisting of San Francisco, U.S.A., and 17 ports in the Pacific Ocean. The second

group consisted of mostly New Zealand ports with the Japanese ports of Susaki Ko

and Niihama, the Filipino port of Masao and Whyalla, Newcastle, and Port Kembla

from Australia. London, U.K. was grouped with the South American ports, which

reduced to 29 ports. Buka and Kieta, from Papua New Guinea, are separated from the

rest of the network. Eight ports from Gabon, Angola, and the Democratic Republic

of the Congo have also been grouped away from the rest of the network.

(a) 2019, � = 0.8
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(b) 2020, � = 0.8

Figure A.3: Visualisation of communities detected using Newman-Girvan
modularity by spectral partitioning with resolution � = 0.8� = 0.8� = 0.8.

Resolution � = 0.5 In 2019, the algorithm identified eight communities with 95%

of nodes placed divided between a similar five groups as for � = 0.8. The group of

20 South American ports and the four Indonesian ports as well as a group of eight

Pacific Island ports was separated from the larger groups. In 2020, ten communities

were found with 93% of the ports split between the five major groups. London U.K.

was again grouped with the South American group of 30 ports. There were two

communities of size 15. The first consisted of four Canadian ports and 11 U.S. ports.

San Francisco remained connected to a slightly smaller group of 14 Pacific Island

ports. A group of eight New Zealand ports was also separated, and Buka and Kieta

ports from Papua New Guinea were again placed in their own group.

63



(a) 2019, � = 0.5

(b) 2020, � = 0.5

Figure A.4: Visualisation of communities detected using Newman-Girvan
modularity by spectral partitioning with resolution � = 0.5� = 0.5� = 0.5.

Resolution � = 0.2 For resolution � = 0.2 there were just five communities found

in the 2019 network with 99% of nodes divided between three major groups, North and

South America, Europe and Africa, and Asia and Oceania. Just six Indonesian ports

were divided between two groups. Of these, four are the Indonesian ports of Cirebon,

Pelabuhan Ratu Coal Power Plant, Probolinggo and Tanah Merah. The other two

ports are Ende and Waingapu. In 2020 there were six communities with 97% of ports

grouped into one of three major groups. Here, we note the majority of nodes from

Southwest Africa and the Middle East were reassigned to the Asian/Middle Eastern
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group in 2020. Of the small communities, the first community formed consists of

four Canadian and ten U.S. ports, all part of the Great Lakes Maritime System. The

second small group consisted of eight Pacific Island ports. Lastly, the two ports of

Buka and Kieta in Papua New Guinea were again grouped separately.

(a) 2019, � = 0.2

(b) 2020, � = 0.2

Figure A.5: Visualisation of communities detected using Newman-Girvan
modularity by spectral partitioning with resolution � = 0.2� = 0.2� = 0.2.
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Resolution � = 0.1 There were three communities found in the 2019 network with

99% of ports placed in two major groups. In both years, ports appear to be assigned

to a group based on being East or West of the 100� West or 50� East lines or on a

continent-basis. In 2019, the Indonesian ports of Cirebon, Tanah Merah, Pelabuhan

Ratu Coal Power Plant, and Probolinggo were separated from the two major groups

and in 2020 all the ports were divided into one of two main groups.

(a) 2019, � = 0.1 (b) 2020, � = 0.1

(c) 2019, � = 0.1
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(d) 2020, � = 0.1

Figure A.6: Visualisation of communities detected using Newman-Girvan
modularity by spectral partitioning with resolution � = 0.1� = 0.1� = 0.1.
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Appendix B

Spatially-corrected community
detection

In Figure B.1, we visualise the full set of optimisation landscapes from Section 2.1.3

for the unconstrained (left panel) and attraction-constrained (right panel) models on

the network of shipping data for three di↵erent metrics. The loss function (2.10), in

the top row, the log of (2.10) in the middle row, and the common part of commuters

(CPC) index [10] in the bottom row. The CPC index is widely used in Applied

Mathematics and returns a score of 1 for two sets that match perfectly and a score of

0 for two sets that do not match at all. Minima of the loss functions are indicated by

pink and yellow points, and the maximum of the CPC is indicated by a black square

in each plot.
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B.1 Mobility models

B.1.1 Visualisations for the common neighbours model

(a) (b)

(c) (d)

(e) (f)

Figure B.1: The optimisation landscapes for the unconstrained (left panel) and
attraction-constrained (right panel) for three di↵erent metrics. The loss function
(2.10), in the top row, the log of (2.10) in the middle row, and the CPC [10] in the
bottom row. Minima of the loss functions are indicated by pink and yellow points,
and the maximum of the CPC is indicated by a black square in each plot.
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B.2 Synthetic spatial benchmarking networks

Throughout the dissertation, we use the normalised mutual information score to assess

the similarity between two partitions. Here, we present its formal definition.

Definition B.2.1 (Normalised mutual information). Normalised mutual information

relies on the concepts of entropy and mutual information [13, 11]. Let X and Y be

two random variables which can take values x 2 ⌦X and y 2 ⌦Y , where ⌦X and ⌦Y

are discrete sets. The entropy of X is given by

H(X) = �

X

x2⌦X

p(x) log
2
(x)

The mutual information between X and Y is given by

MI(X, Y ) =
X

x2⌦X

X

y2⌦Y

p(x, y) log
2

p(x, y)

p(x)p(y)
.

This is normalised to give the normalised mutual information

NMI(X, Y ) =
2⇥MI(X, Y )

H(X) +H(Y )
.

If the information in X is captured by the information in Y , then MI(X, Y ) =

H(X) = H(Y ), and NMI(X, Y ) = 1. If X and Y contain completely di↵erent sets

of information, then MI(X, Y ) = 0 and NMI(X, Y ) = 0.

B.3 Synthetic spatial benchmarking networks

B.3.1 The uniform model

The uniform model by Expert et al. produces networks where attributes are randomly

assigned, and edge density and graph assortativity are tunable parameters. Here, edge

density refers to the total number of edges in the network relative to the number of

nodes.

The parameters used for assortativity and edge density are, respectively, � and ⇢.

First, n nodes are randomly placed in some spatial location and assigned a binary

attribute value of either gi = 0 or gi = 1. For any two nodes vi and vj, their community

assignment is denoted by gi 2 {0, 1}. The expected number of flows between them is

calculated according to

pExpij =
1

Z

�gigj

d`
(B.1)
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where Z is a normalisation constant such that
P

i 6=j pij = 1 and [10]. The ⇤ matrix

takes the form

⇤ =

✓
�00 �01

�10 �11

◆
=

✓
1 �
� 1

◆
. (B.2)

In this way, varying � provides a simple way to control graph assortativity. For

� < 1 the graph is assortative, with disconnected communities for � = 0. For all

� > 1 the graph has a primarily disassortative community structure. The parameter

⇢ controls the total number and weight of flows in the network, which will be given

by m = ⇢n(n � 1) in the directed case. A synthetic graph showing an assortative

regime with � = 0.1 and ` = 2.0 is shown plotted with the nodes in their spatial

locations in Figure B.2. Networks resulting from three di↵erent values of � are shown

in Figure 2.5. Figure 2.5a. shows a network where there are no connections between

communities corresponding to � = 0, Figure 2.5b. shows a predominantly assortative

network corresponding to � = 0.1 and Figure 2.5c. shows a network with a highly

disassortative structure corresponding to � = 20. A variation of this is proposed in

[10] where �12 = � + 0.1 and �21 = � � 0.1 which induces a net flow between the

communities.

Figure B.2: Nodes plotted in their spatial locations for an assortative synthetic net-
work generated according to the uniform model in eq. (B.1), [10, 16] with ` = 2,
� = 0.1, ⇢ = 1.0 and N = 100.

B.3.2 The correlated group membership model

The correlated group membership model is constructed as follows: in an (x, y)-plane

two centers are chosen, and as in [10], we place these centers at (x ± L, 0), where

L > 0 is an value to be specified. Then, n/2 nodes are placed around each center

and the distance dci of each node vi from its center c is determined proportional to

the exponential distribution with scale ⇣, i.e. p(dci) / edci/⇣ .
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To assign attributes in the fully correlated model (when a node’s attributes are

fully decided by its spatial location) we simply bisect the plane about x = 0. All

nodes in x < 0 are assigned community gi = �1 with probability q = 1 and all nodes

in x > 0 are assigned to community gi = +1 with probability q = 1. To introduce

some randomness we can change q to q = 1�✏, with ✏ 2 [0, 0.5]. Thus, ✏ allows one to

tune the degree of correlation between space and attribute assignment. We see that

✏ = 0.5 results in the fully random case where space plays no role in community.

The links between nodes in the model are then assigned according to

pCer

ij =
1

Z
exp


�

✓
gigj �

dij
�⇣

◆�
, (B.3)

where Z is again the normalisation constant as in Eq. B.1. The number of edges is

also determined by ⇢ as in Eq. B.1. The network produced by (B.3) is assortative

[10] but may be made disassortative if we instead use

pCer

ij =
1

Z
exp


�

✓
�gigj �

dij
�⇣

◆�
. (B.4)

(a) (b)

Figure B.3: Two extremes of the correlated group membership model by Cerina et

al. [9]: the first (a) has ✏ = 0.0 which results in attribute assignment being fully
dependent on space, and the second (b) uses ✏ = 0.5 where space and attributes are
entirely uncorrelated1.

The value of the product �⇣ controls the e↵ect of space on link formation. For �⇣ ⌧ 1

space is the dominant factor and for �⇣ � 1 attribute assignment is more important

[10]. For this dissertation, ⇣ is fixed at ⇣ ⌘ 1, so � controls the role of space in link

formation.
1
code for this adapted from https://github.com/rodrigolece/spatial-nets
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B.4 More results

B.4.1 Synthetic networks

Choosing a binning distance for the Expert model

Since the Expert et al. distance decay function (2.2) depends on a binning procedure,

we test to what degree bin size a↵ects the results of the algorithm. In Figure B.4 we

compare NMI scores between the true and predicted partitions for a range of di↵erent

bin sizes and � 2 [0, 2]. For each parameter search, we construct synthetic networks

using the uniform model as proposed by Expert et al. [16] with n = 20 nodes in

a 10 ⇥ 10 square, and the random seed set to 0 for reproducibility. We see that

for highly assortative graphs (� < 0.5), there is no huge di↵erence in performance

between bin sizes. For slightly more disassortative graphs, the algorithm performs

better for bin sizes less than or equal to two, so we chose this value of bin size to use

in our comparative parameter searches in Section 2.3.1.

(a) (b)

Figure B.4: NMI in (binsize,�)-space with fixed ⇢ = 1. The NMI scores are
calculated for predictions of Expert et al.’s spatially-corrected modularity function
on the uniform benchmarking network for a 100 ⇥ 100 gridsearch of � 2 [0, 2] and
binsize 2 (0, 10). It is clear from calculating the average NMI across each binsize (a)
that the optimal binsize occurs near � = 2.

Results of the gravity model in the one-step method Here we show some

further results for the one-step method using the gravity model family in Chapter 2.
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(a) (b)

(c) (d)

Figure B.5: Normalised mutual information scores for the one-step method
with the gravity model family applied to directed, uniform benchmarking
networks. Parameter searches were run with � 2 [0, 1] and ⇢ 2 [1, 100]. For each
(⇢,�)-pair a network of n = 20 nodes with a known binary partition was generated.
Community detection was then performed using the one-step method with each mem-
ber of the gravity model family (a)-(d) [49].

Results of the radiation model in the one-step method Here we show some

further results for the one-step method using the radiation model family in Chapter 2.
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(a) (b)

(c) (d)

Figure B.6: Normalised mutual information scores for the one-step method
with the radiation model family, applied to directed, assortative synthetic
graphs. Parameter searches were run over a 100 ⇥ 100 grid with � 2 [0, 1] and
⇢ 2 [0, 100]. For each (⇢,�)-pair a network of 20 nodes with a known binary partition
was generated. Community detection was then performed on it using the one-step
method with a member of the radiation model family [49].

Null Model Avg. Time Avg. Modularity Avg. NMI

Unconstrained 0.0485 0.6009 0.4223
Production 0.0529 0.4561 0.4222
Attraction 0.0522 0.5735 0.3944
Doubly 0.0534 0.4491 0.4016

Table B.1: Averaged results for one-step community detection using the
radiation model family on directed, uniform benchmarking networks. Pa-
rameter searches were run over with � 2 [0, 1] and ⇢ 2 [1, 100]. Results show the
average calculation time, modularity and NMI scores across the entire (⇢,�) domain.

Results for the two-step method Here we show visualisations of results for the

two-step method in Chapter 2.

75



(a) (b)

(c) (d)

Figure B.7: Results of the two-step method on correlated group membership
model synthetic networks with Newman-Girvan modularity. For each spa-
tial null model and constraint, 10 directed networks were constructed with 20 nodes,
edge density ⇢ = 100 and ` = 1, and � was varied on a logarithmic scale in [10�1, 101].
Community detection was carried-out by first extracting the doubly-constrianed grav-
ity (left) or radiation (right) spatial backbone, then performing community detection
on the resulting signed network using the Newman-Girvan null model. The top row
uses ✏ = 0.5 which creates networks where space and attributes are completely un-
correlated and the bottom row shows results for ✏ = 0.0 where space and attributes
are fully correlated. The � � 1 regime corrresponds to space having no impact on
link formation while the � ⌧ 1 regime corresponds to space being the main factor.
The error bars here represent one standard deviation.
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(a) (b)

(c) (d)

Figure B.8: Results of the two-step method on correlated model synthetic
networks with Erdős-Rényi modularity. For each spatial null model and con-
straint, 10 directed networks were constructed with 20 nodes, edge density ⇢ = 100
and ` = 1, and � was varied on a logarithmic scale in [10�1, 101]. Community de-
tection was carried-out by first extracting the doubly-constrianed gravity (left) or
radiation (right) spatial backbone, then performing community detection on the re-
sulting signed network using the Erdős-Rényi null model. The top row uses ✏ = 0.5
which creates networks where space and attributes are completely uncorrelated and
the bottom row shows results for ✏ = 0.0 where space and attributes are fully corre-
lated. The � ⌧ 1 regime corrresponds to space having no impact on link formation
while the � � 1 regime corresponds to space being the main factor. The error bars
here represent one standard deviation.

77



B.4.2 The maritime shipping network

Results of the one-step method

Gravity model with resolution � = 0.2 Figure B.9 shows ports plotted spatially

for 2019 (a) and 2020 (b) networks, with community assignment denoted by colour.

We include the 2019 network again to allow for easy comparison. Five communities

are found at resolution � = 0.2 in 2019 (b), 47% of ports are placed in a group that

encompasses all trans-Pacific routes, and 49% of ports are placed in a group that

contains all transatlantic routes. A group of 26 South American ports is shown in

purple. Not visible on this figure, six Indonesian communities are also divided into two

separate groups. In the 2020 network, there are just three communities at resolution

� = 0.2. The number of ports in both the trans-Pacific and transatlantic communities

increased. A community consisting of 14 ports in the Great Lakes Maritime System

is also shown in purple.
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(a) 2019

(b) 2020

Figure B.9: Visualisation of spatially-corrected communities detected using
the one-step method with the doubly-constrained gravity model on the
container ship networks. Ports are shown in their spatial locations and groupings
are denoted by colour. Five communities are found at resolution � = 0.2 in 2019, 47%
of ports are placed in a group which encompasses all trans-Pacific routes (teal), and
49% of ports are placed in a group which contains all transatlantic routes (orange).

Looking at the community structures in further detail, we make some more specific

observations. Before spatial correction, six communities were detected at resolution

� = 0.2, of which 99% of ports belonged to one of three major groups. Using the

gravity model, five communities are detected, of which 91% of ports belong to one

of two major communities. The American continent becomes more divided, and

the West Coast of America switches from a community that encompassed the entire

continent of America in the Newman-Girvan communities, to a large community of
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448 ports (⇠47% of the network) containing most of Asia. Much of the Middle East

and South and East Africa are removed from the European and North African groups

and also placed in this community. Most of North America is now identified as part

of the European and North African community, in a group of 470 ports (⇠49%). A

group of 26 South American ports, predominantly from Brazil, is isolated from the

major communities in 2019 but rejoins the transatlantic community in 2020. While

most ports experience a decline from January-August 2020, many Brazilian ports

experienced an increase [48]. It appears this was su�cient to reintegrate Brazil into

the network as this group of ports re-enters a major group in 2020.

Introducing the gravity model for the 2020 network Figure B.9(b) results in far

fewer communities than detected by the classical algorithm. Instead of six, there are

now just three communities, two large, and a North American community of just 14

ports. Again, we see transatlantic and trans-Pacific trade weighted more heavily, and

the East and West coasts of the American continent are separated, with the Eastern

coast reassigned to the group containing Europe and North and West Africa.

Radiation model with � = 0.8 The results for � = 0.8 are shown in Figure B.10b.

Two communities are identified. The number of communities then increases rapidly

with �, seven communities are observed for � = 0.85 and 29 for � = 1.0. However,

for both � = 0.85, the major groups remain consistent with the 0.8 cases. Visualising

the communities spatially (Figure B.10) is not as informative as for the gravity and

Newman-Girvan modularities, so we include Tables B.2 and B.3 showing the ten ports

the highest degree in each community for 2019 and 2020.

(a) Doubly-constrained radiation modularity, 2019, � = 0.8
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(b) Doubly-constrained radiation modularity, 2020, � = 0.8

Figure B.10: Visualisation of communities on the 2020 network detected
using Newman-Girvan and doubly-constrained radiation modularity with
resolution � = 0.8� = 0.8� = 0.8. The radiation model splits the network into two groups with a
much less obvious interpretation.

2019 2020

Singapore, Singapore Singapore, Singapore
Ningbo, China Rotterdam, Netherlands
Rotterdam, Netherlands Ningbo, China
Xiamen, China Xiamen, China
Shekou, China Shekou, China
Kobe, Japan Tokyo Ko, Japan
Nagoya Ko, Japan Mina Jabal Ali, United Arab Emirates
Colombo, Sri Lanka Yiantian, China
Piraievs, Greece Colombo, Sri Lanka
Osaka, Japan Bremerhaven, Germany

Table B.2: Ports with the highest degree for 2019 and 2020, for group one as found
by the doubly-constrained radiation modularity with resolution � = 0.8.
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2019 2020

Shanghai, China Shanghai, China
Pusan, South Korea Pusan, South Korea
Hong Kong, Hong Kong Hong Kong, Hong Kong
Kao Hsiung, Taiwan Kao Hsiung, Taiwan
Qingdao Gang, China Qingdao Gang, China
Port Klang, Malaysia Port Klang, Malaysia
Tokyo Ko, Japan Thanh Ho Chi Minh, Vietnam
Thanh Ho Chi Minh, Vietnam Antwerp, Belgium
Yokohama Ko, Japan Yokohama Ko, Japan
Antwerp, Belgium Tianjin Xin Gang, China

Table B.3: Ports with the highest degree for 2019 and 2020, for group two as found
by the doubly-constrained radiation modularity with resolution � = 0.8.

Communities detected by the common neighbours model with � = 0.2

Here we include some results of the common neighbours model, where the production-

constrained model has been used to detect communities in the 2020 network. While

the code for using the production and attraction-constrained models for the one and

two-step methods is complete, it has not been su�ciently tested on benchmarking,

which is why these results have not been considered in any great detail.

Figure B.11: Visualisation of spatially-corrected communities detected us-
ing the one-step method with the production-constrained common neigh-
bours+sea distance model and on the 2019 container ship networks.
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Results of the two-step method

We include the 2019 and 2020 results of the two-step method for community detection

with the radiation model here to allow for easy comparison between years.

(a) Two-step method with radiation model, 2019, � = 0.2
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(b) Two-step method with radiation model, 2020, � = 0.2

Figure B.12: Visualisation of spatially-corrected communities detected using
the two-step method with the doubly-constrained radiation model and
Erdős-Rényi modularity [13] on the container ship networks. The methods
detected 14 communities and 15 communities for the 2020 network at resolution
� = 0.2. Ports are shown in their spatial locations and groupings are denoted by
colour. Ports in communites of size less than 30 are shown in white for visual clarity,
which reduces the number of communities to ten. The groups of size less than 30 in
the 2019 network include a group of 22 ports from Brazil, Argentina, Japan, Uruguay
and the Democratic Republic of Congo and two small communities of Indonesian
ports.

In general, the radiation model attributes less import to transatlantic and trans-

Pacific crossings than the radiation model. While the gravity model groups Southern

Africa with the transatlantic community, the radiation model groups it with Middle

Eastern and Southern Asia.
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Appendix C

Spatially-Corrected
Core-Periphery Detection

C.0.1 Likelihood of the DCPM

Elliot et al. calculate the likelihood of this block structure without degree correction

by following the procedure of Karrer and Newman [13, 19], where in this case there

are four blocks gi 2 P = {Pout, Cin, Cout,Pin}. In Karrer and Newman, this derivation

is given for undirected networks so we briefly review the derivation of this likelihood

in the directed case. For all (i, j), we assume the number of edges from node vi to

node vj to be independently Poisson distributed with expected value !rs where r and

s represent the group assignments gi = r and gj = s. In other words, we consider Aij

as a random variable such that Aij ⇠ Poi(!rs). Thus, the probability mass function

for each edge is

p(Aij) =
!
Aij
rs e�!rs

Aij!

The probability of a graph G, given the parameters ! and the partition g is the

probability of all its edges having weights Aij and is given by the product of these

probabilities

P(G|!, g) =
Y

i,j

!
Aij
gigje

�!gi,gj

Aij!
.

This can be rewritten as

P(G|!, g) =

Q
r,s !

mrs
rs e�nrns!rs

Q
i,j Aij!

.

where mrs is the number of edges from group r to group s and nr is the number of

nodes in group r. Taking the logarithm of this expression and ignoring any terms
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that are independent of the parameters ! or the partition g, it is possible to obtain

the expression

log P(G|!, g) =
X

r,s

⇣
mrs log!rs � nrns

⌘
. (C.1)

Di↵erentiating log P(G|!, g) and setting this value to zero, we obtain a value for !rs

which maximises the log-likelihood C.1,

!̂rs =
mrs

nrns
.

This estimate for !̂rs can be substituted into equation C.1 to produce

L(G|g) =
X

r,s

⇣
mrs log

mrs

nrns

⌘
. (C.2)

where r, s 2 {Pout, Cin, Cout, Pin}.

Maximising the log-likelihood has been shown to be equivalent to minimising

the microcanonical entropy [32, 34, 33], and this is the form that is used for the

optimisation procedure in [13].

L(G|g) =
X

(r,s)2‘L’

⇣
mrs log

mrs

nrns
+ (nrns �mrs) log

(nrns �mrs)

nrns

⌘
(C.3)

+
X

(r,s)/2‘L’

⇣
mrs log

mrs

nrns
+ (nrns �mrs) log

(nrns �mrs)

nrns

⌘
. (C.4)

C.0.2 Optimising the DCPM: Advanced HITS

The AdvHITS algorithm, instead of assigning two scores to each node as in HITS,

hubnesss and authority-ness, assigns four scores, {Pout, Cin, Cout,Pin} which are based

on the reward-penalty matrix

D = 2M� 1 =

2

664

�1 1 �1 �1
�1 1 �1 �1
�1 1 1 1
�1 �1 �1 �1

3

775 =
⇥
d1 d2 d3 d4

⇤
=

2

664

e1
e2
e3
e4

3

775 .

where dj is the jth column vector of D, and ei is the ith row vector of D. The iterative

algorithm proceeds as follows:

(i) A n⇥4 matrixU with independent, uniformly distributed entries uij ⇠ Unif(0, 1)

is constructed and each column is considered as a raw score Sraw

i such that

⇥
Sraw

1
Sraw

2
Sraw

3
Sraw

4

⇤
=

⇥
P

raw

out
Craw

in
C
raw

out
P

raw

in

⇤
.
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(ii) Each score is normalised such that for each node, the sum of its 4 scores is unity.

This produces the set of normalised scores

⇥
Snorm

1
Snorm

2
Snorm

3
Snorm

4

⇤
=

⇥
P

norm

out
C
norm

in
C
norm

out
P

norm

in

⇤

according to the equation

Snorm

i (j) =
Sraw

i (j)� Sraw

min
(j)

P
4

k=1
(Sraw

k � Sraw

min
(j))

where i 2 {1, . . . , 4} and j 2 {1, . . . , n} and

Sraw

min
(j) = min{Sraw

1
(j), Sraw

2
(j), Sraw

3
(j), Sraw

4
(j)}.

Additionally, if the di↵erence between the raw scores is less than some threshold

(10�10 here) then each set is ascribed a score of 0.25, implying equal a�nity to

each set [13].

(iii) For the iterative step we now update the raw scores using the reward-penalty

vectors from D,

Sraw

i =
�
A� Â

�
Snorme>i +

�
A>

� Â>�Snormdi.

This is the step where we incorporate the signed modification described in Sec-

tion 3.0.2.

If the null model is symmetric, or a constant term as in this case, the equation

can be rearranged to give

Sraw

i = ASnorm e>i + A>Snorm di � ÂSnorm (e>i + di)

= ASnorm e>i + A>Snorm di �
L

N2
· 1Snorm (e>i + di)

= ASnorm D> + A>Snorm D�
L

N2
(D+D>)

X

i

Snorm

i

which is used in practise.

(iv) Continue steps (ii)-(iii) and record the change in Snorm

i until the observed change

for all four scores is less than a threshold of 10�8.

(v) Use k-means++ [46] to divide the vertices into four clusters based on the latest

Snorm .
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(vi) Finally, simply iterate through the 24 possible permutations of the four clusters

to assign each score to one of {Pout, Cin, Cout,Pin}, such that the log-likelihood

of the DCPM, equation (3.1), is maximised, i.e., equation (C.3) is maximised.

We slightly modify this code to now consider a new, signed version of the DCPM as

in Equation (3.1) where the adjacency matrix Ã is now Ã = A+
� A� where A± are

the positive(negative) spatial backbones, and the null model m
n2 becomes

m+
�m�

n2

and otherwise, the algorithm remains unchanged.

C.1 More results

C.1.1 Synthetic networks

(a)

(b)
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Figure C.1: Confusion matrices for the directed core-periphery algorithm
using the doubly-constrained radiation backbone of a directed graph with
known core-periphery structure. For each p-value, 20 random synthetic networks
with known core-periphery structure were constructed and the directed core-periphery
algorithm applied to them. The columns of the confusion matrices show the percent-
age of times core and periphery nodes were assigned to each of {Pout, Cin, Cout,Pin}.
We see that removing the negative backbone in (b) improves results here, though the
algorithm struggles more with peripheral sets for low p-values.
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C.1.2 The maritime shipping network

(a) 2019 (b) 2020

(c) Gravity directed core-periphery detection on the 2019 network

(d) Gravity directed core-periphery detection on the 2020 network

Figure C.2
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Specific cases We zoom in on three more specific cases to give a more detailed

interpretation of the results.

(i) Many Australian ports are moved from Pout to Pin when spatial-correction using

the gravity model is introduced. This means that the gravity model removed a

significant number of outgoing links from Australian ports, i.e. links to nearby

ports of high in-degree. This suggests that Australia’s imports are largely intra-

regional, which for container flows is likely the case. Australia has a large trade

imbalance of manufacturing goods (more imports than exports). In terms of

the local maritime system, many local lines serving the Pacific Islands go via

Australia, New Zealand, and Fiji, which is all intra-regional tra�c. When these

links are corrected, Australia’s status as a country that predominantly imports

is revealed.

(ii) In the aspatial and gravity-corrected spatial results, Honolulu (Hawaii) is as-

signed to Pout. The radiation model, however, reassigns Honolulu to Cin instead.

Honolulu is not well-connected in the container ship network however it is part

of the U.S.A. Culturally and economically it is much better integrated with

North America than other Pacific Islands with a similar degree of geographic

remoteness. This shows that the correction using the radiation model can dis-

cover some cultural and economic a�nities that were masked by space in the

original network.

(iii) In Chile, when correction using the gravity model is introduced, eight ports are

reassigned from Pout to Pin, and the two biggest ports, Bahia De Valparáıso and

San Antonio move from Cin to Cout. Valparáıso is the largest container port in

Chile and is a popular choice for exporters who wish to introduce their goods

to the Pacific Side of Latin America. San Antonio moves the highest volume

of goods in Chile. These ports very likely import most of their products from

large core ports in Asia, after which they redistribute this to smaller ports in

South America. Hence, they appear as in-core ports in the uncorrected network,

but a clearer pattern of their local functions as out-cores emerges when spatial

correction using the gravity model is introduced.
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