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The identification of meso-scale structures such as community or core-periphery

structures in spatial networks can assist researchers in areas such as assessing the

e�ciency and resilience of transport networks, understanding the origins of uneven

development in trade networks, and identifying evidence-based cultural and economic

boundaries in human mobility networks. When classical network science methods

are used to identify meso-scale structures in spatial networks, the results are often

heavily biased by space. The result is a ‘masking’ e↵ect, and other useful information

contained in the network remains undetected. As new technologies contribute to the

global bank of geolocation data, there is a growing interest in the development of

algorithms that are suitable for spatial networks.

This dissertation makes two main contributions to this field. First, we address

the community detection algorithm, which identifies groups of densely connected

nodes in an otherwise sparse network. We extend this measure to directed networks,

and also incorporate a ‘fine-tuning’ step that we find improves prediction accuracy

on test networks. We also study a pre-processing step that allows one to remove

spatial bias from a network before meso-scale methods are applied, and apply this

to both the community detection and the core-periphery detection problems. Core-

periphery structures consist of a densely connected core and a sparse periphery, and

have not yet been addressed to any significant extent in spatial networks. We apply

these methods to a maritime container ship network of 1433 ports, which makes an

excellent candidate for this analysis due to its strong spatial element. We find that

spatial-correction in the community detection algorithm uncovers significant trade

routes which were not identified by the standard algorithm, and spatial-correction in

core-periphery detection is able to highlight the more regional roles played by some

ports, while the uncorrected method takes a broader perspective.
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Chapter 1

Introduction

1.1 Motivation and problem statement

A graph is a mathematical object, which can be used to make sense of complex data by

abstracting it into a set of pairwise interactions, denoted by nodes and edges. Spatial

graphs are equipped with an additional layer of information; each node is embedded

in a particular location. Many familiar networks, such as transport networks, human

mobility, and social networks, and even neural networks, are spatial networks [5, 16],

and often space has warped the topology of these networks in some way. In transport

networks, the cost of fuel and equipment discourages long connections. This results

in edge length having a truncated distribution. A similar logic applies to the brain,

regions that are closer spatially are more likely to be well-connected due to the cost

associated with axon length [5]. When the propensity of a pair of nodes to form a link

is a↵ected by the distance between them, the bias that this introduces to classical

network science methods often renders their results as trivial [16].

A well-studied example is that of the community detection problem. Community

is a meso- or intermediate-scale structure, where densely connected groups of nodes

exist in an otherwise sparsely connected network [39]. In spatial networks, classical

community detection algorithms, such as Newman-Girvan modularity optimisation

[17], regularly isolate groups of spatially-proximate nodes, and other information

contained in the network structure goes undetected [16]. Several papers have proposed

solutions to correct this spatial bias, most using variations of the popular gravity law

[16, 9, 42, 40, 37, 49], often used in geography and economics. An optimal method to

correct for space, however, has not yet been agreed upon. Or indeed, as in classical

community detection [39], an optimal method may not exist, and correcting for spatial

bias in a network may need to be carried out on a more case-specific basis, carefully
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considering the specific spatial identity of a network before choosing a suitable spatial

correction method.

Most of the literature on spatial networks tends to focus exclusively on community

structure [16, 9, 37, 42, 40], and how space a↵ects other meso-scale structures such

as core-periphery structures has not been explored in much depth. Existing methods

have been applied to a wide variety of networks, primarily a Belgian mobile phone

network [16], dengue fever in Peru [37], a retail network [10], census data [40], and a

terrorist network [42]. However, to date, their implementation on a spatial transport

network has not been studied. In this dissertation, we review, synthesise, and extend

existing methods for the identification of meso-scale structures in spatial networks.

We use a transport network of containerships with a strong spatial element as an

example throughout, but the technique can also be easily applied to other spatial

networks and applications.

State of the art A wide variety of meso-scale structures can be found in networks,

but by far the most popular, and the most researched, is that of community structure.

Classical community detection seeks to divide a network of undirected edges into

communities such that the maximum number of intra-group edges is obtained [39].

Networks with community structure are also referred to as modular, or assortative.

Community detection is performed by (approximately) optimising a quality function

known as the modularity function, where the significance of community structure is

assessed via comparison against some unstructured random graph, known as a null

model. The standard (Newman-Girvan) function uses the configuration model as a

null model [31]. Directed extensions to the modularity problem exist [27], and the

two most popular methods to optimise this function are the Louvain algorithm [6]

and spectral optimisation [35]. These methods are e↵ective for aspatial graphs [6,

35]. In 2011, Expert et al. proposed a spatial-modification of these problems which

introduced a variation of the gravity law [10, 49], into the modularity function. There

are now myriad papers exploring implementations and extensions of Expert et al.’s

method. In 2016, Sarzynska et al. modified the problem by replacing the gravity law

with the radiation model of Simini et al. [37, 43]. Leal Cervantes developed a set of

procedures to constrain spatial models such that they are dimensionally consistent,

as per Wilson’s 1970 definitions of constrained gravity models. Namely, they share

more physical characteristics with the empirical data [10, 49, 29]. Liu, Murata, and

Wakita [29] incorporated these models into the modularity function in an undirected

setting. While community is the most researched meso-scale structure for spatial

2



networks, all variations of the methods have not been exhausted, and in particular,

many choices for a suitable spatial null model have yet to be considered.

Classical core-periphery detection is a lesser-explored class of meso-scale structure,

where an undirected network is divided into a densely interconnected core and a

sparsely connected periphery. The network science definition and algorithm was first

formalised by Borgatti and Everett in 2000 [7]. In 2018, Kojaku and Masuda proved

that it is impossible to detect a discrete core-periphery structure consisting of a single

core and periphery when using the classical configuration model as a null model, and

proposed an algorithm to detect multiple core-periphery pairs using the Erős-Rényi

null model [21]. This paper was followed up by a variation that was able to detect

multiple core-periphery pairs using the configuration model [22]. In 2019, Elliot et al.

proposed a directed extension of the aspatial core-periphery model, where both the

core and periphery were divided into nodes that predominantly received or sent out

links. This provided new insights into the di↵erent structural roles that nodes may

play within the core or the periphery.

(a) (b) (c)

Figure 1.1: Adjacency matrices exhibiting di↵erent meso-scale structure. In
(a) we see global core-periphery structure, in (b) global community structure, in (c)
global community structure with local core-periphery structure.

Instead of modifying a particular community detection method, Leal Cervantes

proposed a pre-processing method to remove spatial bias from a network by extracting

only the edges whose occurrence cannot be explained by the spatial organisation of

a network. These are called spatial backbones. Modifying algorithms to apply them

to spatial backbones is a simpler problem than spatially correcting entire algorithms.

Spatial backbones are signed networks, where edges can take negative values. Thus,

modifying any algorithm to work with spatial networks is then su�cient to use it

in a spatially corrected setting. This is shown using stochastic block models in [10],
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where stochastic block models are used with spatial backbones to unveil a range

of meso-scale structures for a U.K. retail network. Stochastic block models divide

nodes into a wide range of assortative and disassortative groupings but these spatial

backbones have not previously been used for algorithms that seek more specific meso-

scale structures. They have not yet been tested with the classical modularity function

or used in any form of core-periphery detection.

Contributions of this dissertation The developments in the current literature

are by no means extensive and the majority of work focuses exclusively on commu-

nity structure. In this dissertation, we aim to synthesise many of the advances in

the literature and build a broader picture of modern spatially-corrected methods for

both community and core-periphery structures. The dissertation makes the following

contributions:

We use the developments of Leal Cervantes in the construction of dimensionally

consistent gravity and radiation null models [10], and apply these directly to the

modularity optimisation problem. To the best of our knowledge, dimensionally con-

strained models have only been used in this way by Liu, Murata, and Wakita [29],

and with a slightly di↵erent formulation to what is used here. We find using these

dimensionally constrained null models improves on the results of Expert et al. in [16].

Spatial correction by directly modifying an algorithm can be a laborious task, and

successful results are not guaranteed. Spatially correcting the Louvain method [40,

42], for example, involves modifying multiple steps of the algorithm, and computa-

tional constraints reduce the applicability from networks of 118 million nodes [6] to

networks of only 100 thousand nodes. The pre-processing step developed by Leal Cer-

vantes allows the spatial-correction framework to be generalised to di↵erent methods

in a more straightforward manner. In this dissertation, we consider a methodology to

do this for both community detection and core-periphery detection by using signed

modifications of existing algorithms [44, 13, 27]. For community detection, we find

these methods to be e↵ective, but with limitations for sparser networks. As an ex-

ercise, we also study the construction of a novel spatial null model, inspired by the

work of Kosowska-Stamirowska and Zusanna in [23] on shipping networks, which we

call the common neighbours+sea distance null model.

The core-periphery method we modify is a recently published extension of the

classical problem for directed networks [13] based on maximising the likelihood of a

discrete block structure. We account for spatial bias in this algorithm by implement-

ing it on the spatial backbones. To verify our methods, we extend the directed core-

4



periphery synthetic network proposed by Elliot et al. [13] to include spatial e↵ects,

and use this for testing our methods before analysing their results on the maritime

shipping network.

Dissertation outline The rest of this dissertation is organised as follows: the

remainder of this chapter will formalise the notation to be used throughout the dis-

sertation, cover classical community detection theory, and introduce the maritime

shipping dataset to which we apply our methods. In Chapter 2 we discuss modifying

the modularity method for spatial bias. We also cover the theory of constructing

dimensionally consistent null models and incorporating them into the modularity

function or using them to extract spatial backbones. We assess the performance of

these methods using two types of synthetic spatial networks with a known parti-

tion, known as benchmarking networks, before implementing them on the maritime

shipping network. In Chapter 3, we study undirected and directed core-periphery

detection methods applied to the spatial backbones and test these on benchmark-

ing networks and the container ship network. We compare these results to those of

existing algorithms [7, 36, 13] on our container ship network.

1.2 Mathematical background and notation

To begin, we lay out some of the notation that will be used throughout this disser-

tation. In network science, there is an important distinction between networks with

directed and undirected edges, and some metrics are defined di↵erently between the

two. In the context of transport networks, such as flight or shipping networks, it is

preferable to use directed networks as flows cannot be assumed to be bi-directional.

Throughout this dissertation, we predominantly focus on directed graphs but may

occasionally need to derive a measure from the undirected setting.

Undirected graphs Formally, a graph is defined as a tuple G = (V,E), where V =

{v1, v2, . . . , vn} is the set of vertices or nodes and E = {(v1, v1), (v1, v2), ..., (vn, vn)}

is the set of observed links or edges between them. We define the cardinality of set

V as |V | = n, namely the total number of nodes in the network. We let eij represent

the number of edges between nodes vi and vj, where we allow for multi-edges and so

eij 2 Z+
[ {0}. For G undirected eij = eji. We let m represent the total flow in the

network, m =
Pn

i,j=1
eij. We can define the set of neighbours of a node vi by

⌘i = {vj|9(vi, vj) 2 E}.
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The degree of node vi is given by ki where

ki =
X

j | vj2⌘i

eij,

and self-loops are counted twice. For an undirected network, summing the degrees

of each node vi yields
P

i ki = 2m. In the undirected case, this sum is known as

the handshaking lemma [26]. It is convenient to represent a graph in the form of

an adjacency matrix A, where each edge is represented by assigning Aij = eij. In

undirected networks, this matrix is symmetric. This allows many standard results

from linear algebra relating to symmetric postive semidefinite matrices to be utilised.

For a given graph, we define a partition P = {G1, G2, ..., Gk} of its vertices, where

each Gi is a group of nodes. When all nodes are assigned to one group G = V , this

is the trivial partition P0, and when each node is assigned its own individual group,

v1 2 G1, v2 2 G2, ..., vn 2 Gn this is the singleton partition Ps. We will also frequently

use the notation gi, which represents the group assignment of node vi, i.e., gi = G if

vi 2 G.

Directed graphs For a directed graph eij 6= eji, and we must explicitly define out-

and in-neighbours as

⌘outi = {vj|9(vi, vj) 2 E} and ⌘ini = {vj|9(vj, vi) 2 E}.

The total neighbours ⌘i for a node vi in a directed graph is the union of these two

sets. For a directed graph,

kout

i =
X

j | vj2⌘outi

eij and kin

i =
X

j | vj2⌘ini

eij

and the total degree is defined as ki = kout

i + kin

i . The total flow for a directed

graph is then
P

i k
out

i =
P

i k
in

i = m. The adjacency matrix of a directed graph is no

longer symmetric and so the task of extending derivations from undirected to directed

graphs is an active field of research [27, 13, 38]. In the case where we wish to apply

undirected methods to directed graphs, we may symmetrise the graphs by redefining

the adjacency matrix as Ā = 1

2

�
A+A>�. This naturally leads to a loss of information

but will su�ce in many cases.

6



Spatial graphs A spatial graph is a graph where each node is embedded into a

spatial location, geographic or otherwise. This is usually represented by a co-ordinate

vector allowing for the pairwise distance between nodes to be calculated. The notation

varies slightly in this context and is more specific to what di↵erent spatial metrics

represent. The adjacency matrix, in particular, may also be called a flow matrix or

an origin-destination (OD) matrix and represented by Tij. The out-and in-degrees

for a node vi, usually denoted by kout

i and kin

j are called out- and in-flows, Oi and Di.

We will use this notation of Tij, Oi and Dj when we are discussing a result specific to

spatial networks, but otherwise we will adhere to the more general network science

notation of Aij, kout

i and kin

j .

1.3 Methods for classical community detection

1.3.1 Newman-Girvan modularity

The classic modularity optimisation problem aims to find groups of nodes such that

the nodes within the groups are most densely connected and the connections between

di↵erent groups are sparse [26, 39]. This measure is classically defined for an undi-

rected graph, but the extension to a directed graph is discussed later in this section.

The modularity statistic, Q, sums the number of intra-group links and calculates their

significance compared to the expected number of such links under a random graph

without community structure. In the random graph, links are random variables with

probabilities distributed according to some generative model. This random graph is

referred to as the null model, as we are testing a null hypothesis that our empirical

graph is also such a random graph. The standard random graphs are the Erdős-Rényi

and configuration random graphs [14, 31].

The classical Newman-Girvan modularity uses the configuration random graph

model [17]. According to this, the expected number of edges between two nodes, vi

and vj, with respective degrees ki and kj, is
kikj
2m [26]. Considering a partition P of

our network, we arrive at the classic modularity equation

Q =
1

2m

X

G2P

X

i, j2G

✓
Aij �

kikj
2m

◆
.

The null model preserves the total flow of the original network, so for the trivial

partition P0, Q = 0. There is also the option to include a resolution parameter, � in

the form

Q =
1

2m

X

G2P

X

i, j2G

✓
Aij � �

kikj
2m

◆
. (1.1)
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Decreasing � will prefer fewer, larger communities and vice versa. The directed

extension of Q is given by

Q =
1

m

X

G2P

X

i, j2G

✓
Aij � �

kout

i kin

j

m

◆
. (1.2)

The modularity measure can be generalised by considering di↵erent null models. We

denote a general null model representing the expected number of the links between

nodes as Âij. From this, we can write a generalised modularity measure as

Q =
1

m

X

G2P

X

i, j2G

⇣
Aij � �Âij

⌘
. (1.3)

Equation 1.3 is used to introduce spatial-correction to the modularity problem in

Chapter 2.

Optimisation of the modularity function Optimising the modularity function

has been proven to be NP-hard [26] and many algorithms for finding approximate

solutions have been developed. For our purposes, we will use spectral partitioning,

which relies on the symmetry of the modularity matrix B = A � �Â. The form of

spectral partitioning appflied to the modularity matrices in this dissertation is the bi-

and tripartitioning methods developed by Richardson, Mucha, and Porter [35], and

we give an overview of some of the key concepts of these methods in Appendix A.1.

To extend the optimisation problem to directed networks, where the asymmetry

of the modularity matrix causes technical issues, we follow the procedure proposed by

Leicht and Newman [27], who restore symmetry to the modularity matrix by noting

that since Q is a scalar, it is equal to its transpose. Thus, Q = 1

2
(Q+Q>) = 1

4ms>(B+

B>)s and the new quantity to be optimised is the symmetric matrix (B + B>).

Unlike simply symmetrising the adjacency matrix, this approach does not discard

information about edge directions [27].

1.3.2 Motivating example

Throughout this report, we implement our methods on a network of container ship

journeys. The network contains data for the years 2019 and 2020 obtained from Au-

tomatic Identification System (AIS) data, which records the dynamics (e.g. location,

speed, direction) and statics (e.g. type of vessel, length) of all ongoing maritime ves-

sels above 300 GT. Nowadays more than 100,000 maritime vessels, covering the vast

majority of the maritime fleet in terms of tonnage, have an AIS transponder, and

8



hence are included in the data. The years 2019 and 2020 are particularly interesting

to study due to disruption su↵ered as a consequence of Covid-19 [48, 45]. The con-

tainer network also has a strong directional component [18], where routes taken by

vessels tend to be circular, rather than ‘back-and-forth’.

The processed network consists of 1433 ports and their pairwise flow counts. The

approximate sea distances between ports were calculated over a network of possible

routes (Figure 1.2), weighted by distance in kilometers, using the Djikstra shortest

path length [12]. The data is separated into networks for 2019 and 2020 and any

nodes with zero incoming or outgoing flows are removed, leaving 950 nodes in the

2019 network and 1006 nodes in the 2020 network.

Figure 1.2: Network of sea edges over which the Djikstra shortest path length was
calculated to find approximate sea distances between all pairs of ports.

Results Changing the resolution parameter � in (1.3) allows one to ‘zoom’ through

di↵erent granularities of communities detected [26]. For higher values of �, more

communities will be identified and at lower values these communities will be collected

into larger groups, giving a broad overview of a network’s structure. In the main text,

we focus on the resolution � = 0.2 as this produces su�ciently large communities to

enable us to conduct a broad-scale analysis, we also limit our focus to the 2019 network

but some supplementary figures, results, and comments for di↵erent resolutions and

years are included in Appendix A.2.

Figure A.5 shows the results of classical community detection using the Newman-

Girvan modularity function on the 2019 container ship network. Nodes are plotted

in their spatial locations and community assignment is denoted by colour.
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(a) 2019, � = 0.2

Figure 1.3: Visualisation of communities detected using Newman-Girvan
modularity in 2019 shipping network. Ports are shown in their spatial locations
with community assignment denoted by colour. Community detection is implemented
using Newman-Girvan modularity with resolution � = 0.2 and optimised using spec-
tral partitioning [35].

The Newman-Girvan modularity primarily assigns nodes to communities based

on continent. There were just five communities found in the 2019 network with 99%

of nodes divided between three major groups, North and South America, Europe and

Africa, and Asia and Oceania. This pattern is consistent across multiple resolutions.

The only deviation we see from this occurs for some South African ports and ports

from Oceania which are grouped with the American continent. South-South and

intra-Asian containerised flows accounted for 39.9% of containerised trade in 2019

[45], which is possibly what the model is picking up here. Just six Indonesian ports

were divided between two groups. Of these, four are the Indonesian ports of Cirebon,

Pelabuhan Ratu Coal Power Plant, Probolinggo and Tanah Merah. The other two

ports are Ende and Waingapu.
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Chapter 2

Spatially-Corrected Community
Detection

In this chapter, we consider methods by which we can adapt the classical community

detection problem to a spatial network in an unbiased manner. Many community

detection algorithms are built on the assumption that the growth of a graph was

determined by some generative or null model, such as the configuration model in

the Newman-Girvan modularity function [31, 17]. Spatially corrected community

detection involves altering this null model to incorporate space, i.e. incorporating a

spatial null or mobility model.

Throughout this section, we focus on directed, spatial networks, and we use the

conventional notation for spatial networks. That is, the matrix T used to represent

the origin-destination (OD) matrix for the network, and out- and in-flows for a node

vi are represented by the vectors Oi and Di. We default to this notation forthwith,

unless we are explicitly deriving a more general network science result.

For a great deal of this chapter, we make use of the work by Leal Cervantes in [10],

which collects a number of useful results for spatial networks from di↵erent sources,

including a procedure for tuning the parameters of the gravity model, and proposes

a methodology for constructing spatial null models which share certain dimensional

characteristics with the empirical network. We use these null models to adapt the

classical modularity community detection algorithm. Similar work has been done in

the past by Liu, Murata, and Wakita [29], but for undirected networks, and with

a slightly di↵erent constrained gravity model. As we shall see shortly, tuning the

parameters of the gravity model improves on the results of Expert et al.

In Section 2.1, we give a detailed overview of Leal Cervantes’ construction of

the gravity model and how it may be modified such that the out- and in-flows are

preserved by the model, creating a dimensionally-constrained model. We then more
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briefly discuss the extension of this to the radiation model in Section 2.1.2, though a

more thorough discussion can be found in the original paper [10]. In Section 2.1.3 we

present our proposed mobility model, the common neighbours+sea distance model,

which is inspired by maritime shipping networks, and discuss how it may be dimen-

sionally constrained using the same methodology. We use these three models as null

models for all subsequent developments in this dissertation.

In Section 2.2 we cover the spatial backbone methodology developed by Leal Cer-

vantes for removing edges whose occurrence in a network is not statistically significant

relative to some spatial null model [10]. These spatial backbones can then be used for

community detection as part of a two-step procedure. In the Results 2.3 the methods

covered in this section will be tested using two synthetic spatial networks proposed

by Expert et al. and Cerina et al. [16, 9] before we use them to perform community

detection on the container ship network.

2.1 Dimensionally-constrained mobility models

General set-up We begin by presenting the models which will be used as spatial

null models for all spatially-corrected meso-scale structure detection in this disser-

tation. We utilise the following set up throughout: we assume that the number of

trips Tij between nodes vi and vj follows a binomial distribution Tij ⇠ Bin(X, pij).

Here, X is either the total number of flows originating from node vi, Oi, if we are in a

production-constrained setting, or else the total number of flows arriving at vj, Dj if

we are in an attraction-constrained setting. The probabilities pij are generated using

a suitable mobility model. The expected flow between vi and vj is thus given by the

expectation of the binomial distribution: T̂ij = Xpij. In this section, we discuss three

mobility models, the gravity model in Section 2.1.1, the radiation model in Section

2.1.2 and our common neighbours+sea distance model in Section 2.1.3, though the

logic of this formulation can be extended to any reasonable mobility model.

2.1.1 The gravity model

The gravity model has been used for decades in the social sciences [8], geography [15]

and economics [2] to model the intensity of interaction between two entities, separated

by some measure of distance. In 1970, a paper by Wilson [49] showed how the gravity

model, which gets its name from the Newtonian principles upon which it is based, is

not a single model, but actually a whole family of spatial interaction models. Wilson

introduces additional constraints to the classical model in order to ensure either the
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out- or in-flows of the observed data, or both, are conserved. This yields four members

of the gravity model family, the unconstrained (standard) model, the production- and

attraction-constrained models, and the doubly-constrained model.

In its simplest form, the gravity model predicts the volume of interaction between

two vertices vi and vj with the a�nity function

 ij = O↵
i D

�
j f(dij) (2.1)

where dij is the distance between the two vertices, ↵ and � are parameters which

may be chosen arbitrarily, or optimised, and f(·) is a distance decay function which

can take various forms, which we discuss later. The out- and in-flows Oi and Dj are

used to measure the importance of the nodes vi and vj. Alternative measures are

often used in place of Oi and Dj, such as trade volume in economic settings [23], or

population in geographic settings [16]. As in [10], we use out- and in-flows, which

keeps things simple. Using (2.1), a matrix of pairwise a�nities between nodes  with

entries ( )ij =  ij may be generated. This matrix is symmetric in the undirected

case if, and only if, ↵ = �.

The one-step method for community detection In the past [16, 42, 40, 9],

spatially-corrected community detection has been performed by replacing the null

model, denoted T̂ in the spatial context, in the modularity function (1.3) with a

variation of the gravity model a�nity function (2.1). Various forms for the distance

decay function f(·) have been considered. Expert et al. compute a weighted average

for the probability that a link exists based on the data [16]

f(d) =

P
i,j | dij=d TijP
i,j | dij=d kikj

. (2.2)

where ki is the degree of node vi. In this dissertation, we use the simple inverse power

function

f(d) = d�` (2.3)

where ` is a tunable parameter, which is used by [10].

Inserting (2.1) or any of its variations into (1.3), the final form of the gravity

modularity measure becomes

Qgravity =
1

m

X

C2P

X

i, j2C

⇣
Tij � �T̂ij)

⌘
(2.4)

where T̂ is the expected network under one of our gravity models. The same logic

may be used to construct a spatially-corrected modularity function using any other

mobility model, such as the radiation or common neighbours+sea distance models.
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Constrained gravity models

In [10], Leal Cervantes develops a rigorous framework for constructing null models

which are dimensionally consistent as per the 1970 definitions of Wilson [49]. The

rest of this section and Section 2.1.2 are adapted directly from this work.

The unconstrained gravity model The unconstrained gravity model is con-

structed such that total expected flow is equal to that in the observed network. This is

achieved by introducing a weighting Z such that Z
P

i,j T̂ij = m, i.e. Z = m/
P

i,j T̂ij,

where m is the toal flow in the network. Thus the unconstrained gravity model T̂UC

takes the form

T̂UC

ij = Z
O↵

i D
�
J

d`ij
. (2.5)

Production and attraction-constrained gravity models For a null model T̂

to be dimensionally-consistent in a production-constrained setting then the sum of

the out-flows
P
j
T̂PC

ij must satisfy

X

j

T̂PC

ij = Oi

for all nodes vi. In an attraction-constrained setting, the in-flows must satisfy
X

i

T̂AC

ij = Dj

for all nodes vi. In the doubly-constrained setting, both of these conditions must hold.

To create a production-constrained gravity null model, we construct the probabili-

ties pgravij =  ij/
P

k  ik. The rows of the probability matrix (pgravij ) sum to unity so the

matrix (pgravij ) is row-stochastic. If we set T̂ij = Oip
grav

ij then the production condition

is satisfied. Substituting the gravity a�nity function,  ij given by Equations (2.1)

and (2.3) into this allows us to cancel O↵
i , and we obtain the production-constrained

model T̂PC

T̂PC

ij = Oi

D�
j /d

`
ijP

k D
�
k/d

`
ik

. (2.6)

Analogously, to create an attraction-constrained gravity null model, we construct

the column-stochastic probability matrix (pgravij ), pij =  ij/
P

k  kj. If we set T̂ij =

pgravij Dj then the attraction condition is satisfied. Substituting the gravity a�nity

function, Equation (2.1) into this allows us to cancel D�
j and we obtain the attraction-

constrained model T̂AC

T̂AC

ij = Dj

O↵
i /d

`
ijP

k O
↵
k /d

`
kj

. (2.7)
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The doubly-constrained gravity model The doubly-constrained gravity model

TDC takes the form [10, 49]

T̂DC

ij = (AiOi)⇥  ij ⇥ (BjDj). (2.8)

This formulation has the additional requirement that we solve iteratively for two

additional balancing factors Ai and Bj. With a small bit of algebra it can be shown

that

Ai =
1P

j  ij(BjDj)
Bj =

1P
i(AiOi) ij

. (2.9)

The balancing parameters, Ai and Bj are solved using the iterative proportional

fitting procedure, which has guaranteed convergence for closed systems [10]. Hence,

for this constrained setting we require that there be no zero entries of Oi or Dj. From

(2.9), it can be shown that multiplying the rows or columns of T̂DC

ij by a constant will

not a↵ect its final form, hence the O↵
i and D�

j terms can be neglected and the only

parameter which needs to be specified is `.

Constraint type Relevant params. A�nity function Expected matrix

Unconstrained (UC) (↵, �, `)  ij = Oi
↵Dj

�dij�` T̂ij = Z ij

Production (PC) (�, `)  ij = Dj
�dij�` T̂ij = Oi ( ij/

P
k  ik)

Attraction (AC) (↵, `)  ij = Oi
↵d�`

ij T̂ij = ( ij/
P

k  kj)Dj

Doubly (DC) `  ij = dij�` T̂ij = AiOi ijBjDj

Table 2.1: Summary of the di↵erent constrained model types and their relevant pa-
rameters. Table adapted with permission directly from [10].

The iterative fitting procedure is inherently asymmetric and produces asymmetric

matrices even for undirected networks. Thus the doubly-constrained gravity model

is unsuitable for undirected networks. Symmetric fitting procedures exist [25], but

for now, we consider this beyond the scope of the dissertation. The production-

and attraction-constrained models are asymmetric by construction and these are also

only appropriate for directed networks. For this dissertation, we restrict our focus to

directed networks or occasionally symmetrise a null model where appropriate. For a

more rigorous treatment of undirected networks, we refer the interested reader to the

work of Liu, Murata, and Wakita [29].
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Calculating the parameters Finding the optimal parameters to use for a network

is an optimisation problem, where we seek to minimise a cost function of the di↵erence

between the empirical and predicted adjacency matrices. The parameters for the

unconstrained problem can be found by solving the linear least squares problem

K + ↵ logOi + � logDj � ` log dij = log Tij

where we solve the overdetermined system of |⌦| = |{(i, j)|Tij > 0}| equations for

four unknowns (K,↵, �, `). In the production- or attraction-constrained setting, this

is no longer possible due to the terms in the denominators of (2.6) and (2.7). Instead,

the loss function

D(�, `) =
1

2

X

i,j2⌦

⇣
T̂ij � Tij

⌘2
. (2.10)

can be minimised.

For the doubly-constrained model, the calculation of the balancing factors is in-

cluded as part of the cost-function and the parameter ` is optimised while Ai and Bj

are also solved for at each iteration.

2.1.2 The radiation model

The radiation model is a member of the intervening-opportunities (IO) family of

mobility models [10, 43]. Unlike the gravity model, the link probability from node

vi to vj does not depend explicitly on the distance dij but rather on the number of

alternative, closer destinations that are available to a journey leaving vi. The more

of these that exist, the less likely a journey is to continue all the way to node vj.

The authors of the radiation model claim it has a number of advantages over, and

resolves a number of the limitations of the gravity model, which are listed in [43]. In

particular, it has no free parameters that need to be arbitrarily chosen or fitted to the

data. It also only depends implicitly on the distance between nodes dij, removing the

need to explicitly chose a decay function f(·) as in the gravity model. In [43], when

applied to US census data, it far better predicts the commuter flux between Alabama

and Utah, while the gravity model is wrong by an order of magnitude.

The model is formulated as follows: consider two nodes, vi and vj with distance

between them dij. For simplicity, we consider vi to be located at the origin. The

radiation model usually uses a measure of population to represent the importance of

each node, but here, we replace this with in-flows Di at each node, as in [10]. We

construct a circle of radius dij with center (0, 0) and consider all other nodes vk within

16



vi

dij
vj

Figure 2.1: Schematic of the radiation intervening-opportunities model. The
probability of an edge existing from node vi to vj depends on the number of and
populations of other nodes (black dots) within the circle of radius dij that is centered
at vi.

this circle. The measure sIOij =
P

k 6=i,j Dk gives the total in-flow within this circle.

The radiation model is formed as

pradij =
DiDj

(Di + sIOij )(Di +Dj + sIOij )
, (2.11)

and we let the matrix SIO be the IO matrix where (SIO)ij = sIOij . In [10], these

probabilities are normalised such that the matrix (pradij ) is row-stochastic by dividing

by (1�Di/M). We obtain the production-constrained expectations

T̂ij = Oi
DiDj

(1�Di/M)(Di + sIOij )(Di +Dj + sIOij )
. (2.12)

These dimensionally-constrained mobility models have been used as successful

spatial null models in [10] to detect meso-scale structures by use of stochastic block

models.

2.1.3 The common neighbours model

Kosowska-Stamirowska and Zusanna used machine learning techniques to study the

performance of di↵erent network measures in link prediction for maritime shipping

networks [23]. Among these, a gravity model correctly predicted on average 14-20%

of links while a parameter-free model using only the number of common neighbours

between ports was found to correctly predict 19-23% of links. The model of Kosowska-

Stamirowska and Zusanna combined the common neighbours measure with sea dis-

tances and slightly improved on this, correctly predicting up to 24% of links. The

improvement was observed for container carriers, bulk carriers, general cargo ships,

17



and petroleum tankers. The authors suggest that this phenomenon could be justified

by the tendency to ‘shortcut routes’ in the shipping industry. If there is a high volume

of trade between two ports, creating a direct route will increase e�ciency. Motivated

by this result, we suggest a novel spatial null model for maritime networks, the com-

mon neighbouts+sea distance null model, where the probability of a link between two

nodes depends on the number of flows taking indirect paths between them, augmented

by their pairwise (sea)-distance.

For a directed spatial network with OD matrix T , the number of two-step paths

between two nodes, vi and vj, is given by T 2. If the intermediate node, vk, has a

very high degree, then its appearance as a common neighbour is less remarkable. To

correct for this in undirected networks, the Adamic-Adar index is often used [1]. The

Adamic-Adar index between nodes vi and vj is given by

sAA

ij =
X

vk2⌘i\⌘j

1

log kk

where kk is the degree of node vk and ⌘i is the set of neighbours of node vi. To extend

this to spatial, directed networks we use

sAA

ij =
X

vk2⌘outi \⌘inj

1

log(Ok +Dk)
, (2.13)

where Ok and Dk represent the out- and in-flows for node vk. We let the matrix SAA

be the Adamic-Adar matrix where (SAA)ij = sAA

ij . This can be calculated in matrix

form as

SAA = TD̃T

where D̃ is a diagonal matrix with elements

(D)ii =
1

log(Oi +Di)
.

To introduce distances, we construct a new a�nity function

 ij =
(sAA

ij )↵

d`ij
(2.14)

where ↵ is a tunable parameter, and once again are faced with the task of constructing

dimensionally-consistent null models.
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vi

vj

Figure 2.2: Common neighbours intuition: if there are many links from vi to vj,
the model expects there to also be direct links from vi to vj, especially if the other
nodes have low total out- and in-flows.

Dimensionally-consistent null models The construction of the unconstrained

common neighbours model remains the same as for the gravity and radiation model

and we find the expected flow T̂ to be given by

T̂UC

ij = Z ij = Z
(sAA

ij )↵

d`ij

where Z = m/
P

i,j  ij and m =
P

i,j Tij. To formulate the production-constrained

model, we construct the row stochastic matrix of probabilities with entries pCN

ij =

 ij/
P

k  ik where  ij is as defined in Equation (2.14). Then

T̂PC

ij =
Oi(sAA

ij )↵d�`
ijP

k(s
AA

ik )↵d�`
ik

.

Likewise, for the attraction-constrained model

T̂AC

ij =
(sAA

ij )↵d�`
ij DjP

k(s
AA

kj )↵d�`
kj

.

The doubly-constrained model is also formulated in the usual way [10], where

T̂DC

ij = (AiOi)⇥
(sAA

ij )↵

d`ij
⇥ (BjDj)

and Ai and Bj are balancing factors.

Fitting the parameters Since the terms Oi and Dj don’t appear in the a�nity

matrix  ij, we cannot perform the elegant substitutions that were used for the gravity

and radiation models in [10], however, the optimisation procedure remains the same

and we solve for a di↵erent set of parameters. The doubly constrained problem is now
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optimised using nonlinear least squares and a proportional fitting procedure, where

we solve for (↵, `) rather than just ` at each step.

To visualise how the model may be fit to the shipping data, we show the optimi-

sation landscapes for the unconstrained (left panel) and attraction-constrained (right

panel) models on container ship data for three di↵erent metrics in Figure 2.3, the loss

function (2.10), a logarithmic variation of (2.10) given as

LD(�, `) =
1

|⌦|

X

i,j2⌦

(log T̂ij � log Tij)
2 (2.15)

and the common part of commuters (CPC) index. The CPC index is widely used

in Applied Mathematics to quantify the similarity between two sets [28]. It returns

a score of 1 for two sets that match perfectly and a score of 0 for two sets that do

not match at all. Minima of the loss functions are indicated by pink dots, minima

of a logarithmic variation of (2.10) are indicated by turquoise triangles, and maxima

of the CPC index are indicated by black squares. In Appendix B.1.1, the full set of

optimisation landscapes for all three metrics is included.

(a) (b)

Figure 2.3: The optimisation landscapes for the unconstrained (left panel) and
attraction-constrained (right panel) for the loss function (2.10). Minima of the loss
functions are indicated by pink dots. Also shown are minima of (2.15) (turquoise
triangles), and maxima of the common part of commuters index (black squares).

2.2 The spatial backbone problem

The first method of spatial-correction uses the spatial null models presented in Sec-

tions 2.1 to directly modify the general modularity function (1.3) in a one-step process.

The spatial backbone problem presents us with an opportunity to generalise these

spatially corrected community detection methods. Spatial backbone extraction is a
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preprocessing step that removes spatial bias from the network before any community

detection methods are applied. The result is a signed network, for which it is often

more straightforward to modify existing meso-scale structure detection algorithms.

The goal of extracting the spatial backbone from a network is to remove those

edges from the network whose occurrence can be explained by our spatial null model,

be that the gravity model, radiation model, or something else. In this section, we

closely follow the developments of Leal Cervantes in [10] for extracting spatial back-

bones from networks. If there are no other factors at play (such as meso-scale struc-

tures) in the growth of a network, we expect the edges in the spatially corrected graph

to be arranged randomly. If so, we expect the graph to be largely explained by the

configuration [31] or the Erdős-Rényi random graphs [13].

2.2.1 The general backbone extraction problem

The spatial backbone extraction problem begins with the null hypothesis H0 that

the observed network, T , has edges generated according to the rules of a spatial

null model. Thus, with one of the mobility models from Section 2.1.1-2.1.3 as the

spatial null model, the distribution of flows across the edges is given by a binomial

distribution, i.e.

H0 : Tij ⇠ Bin(X, pij). (2.16)

The probability mass function (pmf) for each entry of the flow matrix T taking some

value w > 0 is

P(Tij = w) =

✓
X
w

◆
pwij(1� pij)

w, (2.17)

where pij is the probability of an edge occurring according to our spatial null model.

Here, X is either the production Oi or attraction Dj vector, dependent on whether

we are in a production or an attraction setting. We seek entries of the empirical

flow matrix T which are significantly high or low with respect to these probability

distributions. Left and right-tailed statistical tests are constructed for this. The

right-tailed test is used to find edges with significantly larger flows than could be

explained by our null model. The probability of observing an edge with a flow count

greater than or equal to t in a graph generated by our null model is given by the

p-value

p = P(Tij � t|H0) =
XX

w=t

P(Tij = w). (2.18)
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We extract the significant edges with p-values larger than some constant ↵ (usually

↵ = 0.01) and form the network which consists of just these edges: the positive

backbone �+. For the left-tailed test, the probability of observing an edge of value

less than t is

p = P(Tij < t|H0) =
tX

w=0

P(Tij = w), (2.19)

and this forms the negative backbones ��.

Figure 2.4: Visualisation of the spatial backbone extraction process for the
positive backbone Green links denote positive edges which are extracted to form
the positive spatial backbone (final panel).

We can combine both backbones into a single backbone

� = �+
� �� =

8
><

>:

1 if Tij is a positive edge

�1 if Tij is a negative edge

0 else

Intuitively, the positive backbone can be understood as the set of edges in which

there is a lot more flow than our mobility model predicts. This could be indicative of

some auxiliary positive relationship between two nodes. In the case of a network of

ports, for example, this could represent a close trading partnership due to cultural or

historical ties between regions. By similar logic, the edges in the negative backbone

suggest a possible negative relationship between two regions, perhaps strong cultural

di↵erences, sanctions, or historical animosity.

2.2.2 Two-step community detection

In this subsection, we consider calculating the modularity using the extracted spatial

backbones of a network, a methodology not yet explored in the current literature. In

this case, we need only use a signed modification of a more classical null model in

our modularity function, such as the usual Newman-Girvan or the Erdős-Rényi null
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models. In [44], Traag proposes that instead of directly calculating the modularity

of a signed network, we split the network’s adjacency matrix into one for its positive

edges A+ and one for its negative edges A� as follows

A+

ij =

(
Aij if Aij � 0,

0 else.
A�

ij =

(
|Aij| if Aij < 0,

0 else.
(2.20)

These can be used to calculate the modularities Q+ and Q�, respectively for each

matrix. We wish to minimise the number of negative links within communities,

so Traag proposes we maximise Q+ whilst minimising Q�. Thus, a new objective

function for signed networks is formed as Q = Q+
� Q�. For a partition P =

{G1, G2, . . . , Gk}, where gi = G if vi 2 G, we obtain

Qsigned =
1

m

nX

i,j=1

✓
Aij �

�
Â+

ij � Â�
ij

�◆
�gigj (2.21)

where

�gigj =

(
1 if gi = gj,

0 gi 6= gj.

The formulation of the Newman-Girvan null model is provided in [44] so we only

include the formulation for the Erdős-Rényi (ER) null model here. Letting m+ be

the total flow in the positive network and m� the total flow in the negative network,

and noting that the number of nodes is the same for both networks, we have signed

ER-modularity

Qsigned =
1

m

nX

i,j=1

✓
Aij �

m+
�m�

n2

◆
�gigj . (2.22)

From now on we refer to this method, which involves extracting the spatial back-

bones before optimising the modularity as the two-step method, and we refer to the

method which involved incorporating space directly into the modularity function as

the one-step method.

2.3 Results

2.3.1 Synthetic networks

Before we apply our methods to an empirical dataset, we must verify that they

achieve their purpose. In community detection, validation is usually performed using

a synthetic benchmarking network where a known community structure a↵ects link

formation. An algorithm’s accuracy may be assessed by comparing its predicted
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partition with the true partition [9, 16, 37]. The benchmarking methodology has the

additional advantage that it allows one to explore parameter spaces in great detail,

building an understanding as to what type of network an algorithm is most suited to.

To quantify the similarity between the predicted partition and the true partition, we

use the normalised mutual information (NMI) score, which is based on the concepts

of entropy and mutual information [13, 11]. This score ranges between 0 when the

partitions contain completely di↵erent information, and 1, when they are identical.

A formal definition is included in Appendix B.2.

Two benchmarking networks are used by Leal Cervantes for community detection

in [10]. The first, originally proposed by Expert et al. generates a random network

where nodes are embedded in space and have random binary group assignments de-

termined by a uniform distribution, we refer to this henceforth as the uniform model.

In the second benchmark, proposed by Cerina et al. the level of correlation between

space and community assignment is a tunable parameter, and we refer to this as the

correlated group membership model. We give some details of the construction of these

networks in Appendix B.3.1 and B.3.2, which are adapted from [10, 16] and [9], where

more thorough discussions can be found.

The uniform model

The uniform model by Expert et al. [16] produces networks where attributes are ran-

domly assigned, and edge density and graph assortativity are tunable parameters.

Here, edge density refers to the total number of edges in the network relative to the

number of nodes. Assortativity is connected to the type of community structure a

graph displays. If a graph is modular, then nodes within communities tend to be

densely connected, whilst connections between communities are sparse. Conversely,

a bipartite graph [3], where nodes are predominantly connected to nodes from other

groups, is disassortative. We show this type of modular community detection, natu-

rally, only performs well for assortative graphs.

The parameters used for assortativity and edge density are, respectively, � and

⇢. For � = 0, a graph consists of a set of fully disconnected communities with dense

internal connectivity. For � < 1 graphs are assortative, and for � > 1 they are

disassortative. Synthetic networks generated using the uniform model with n = 100

nodes for � = 0, � < 1 and � > 1 are shown in Figure 2.5 (a)-(c). The parameter ⇢

controls edge density in that the number of edges in the graph is ⇢n(n� 1), where n

is the number of nodes.
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(a) (b) (c)

Figure 2.5: Three undirected synthetic networks of n = 100 nodes placed in a
10 ⇥ 10 square with link probabilities determined by Expert et al.’s uniform model
[16]. The nodes are not plotted in their spatial locations but according to Python
library NetworkX’s spring layout to exhibit the e↵ects of assortativity. Attribute
communities are denoted by colour and node degree is represented by size. Figure
(a) shows a network of disconnected communities produced when � = 0. Figure (b)
shows a highly assortative graph produced when � = 0.1 and Figure (c) shows a
primarily disassortative graph produced for � = 20.

Results: the one-step method

We begin by studying the results of the one-step method, where the modularity

function is directly modified to incorporate a spatial null model. We run parameter

searches over � 2 [0, 2] and ⇢ 2 [1, 100], to test a wide range of assortative and

disassortative structures and edge densities. Expert et al. and Leal Cervantes use

similar search domains, so it is straightforward to compare method performances.

Undirected networks The Expert et al. and classical Newman-Girvan modularity

functions are defined for the undirected setting so we take a brief departure to consider

undirected networks. Since the constrained models are asymmetric by construction,

only the unconstrained models are suitable for this purpose. We use the unconstrained

gravity model, with parameters (↵, �, `) tuned to the data as described in Section

2.1, and perform 100 ⇥ 100 grid parameter searches, constructing uniform networks

of n = 20 nodes, with � 2 [0, 2] and ⇢ 2 [1, 100]. For each (⇢,�)-pair, the modularity

function is optimised using spectral methods [35], and the NMI between the predicted

and true partition is calculated for the unconstrained gravity, Expert et al.1, and

Newman-Girvan modularity2. Heatmaps of the results are shown in Figure 2.6, where

1
A bin size of two is chosen for the Expert et al. binning procedure (2.2), and this choice is

discussed further in Appendix B.4.1.
2
We use the original MATLAB code from [16] to predict the Newman-Girvan and Expert et al.

partitions, and the code of Leal Cervantes in [10] to construct the constrained gravity and radiation

models, but the rest of this code was developed for this dissertation in Python.
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we see that tuning to the parameters to the data has a positive e↵ect on predictive

performance, even for the unconstrained gravity model.

(a) (b) (c) (d)

Figure 2.6: Comparison of NMI scores across (⇢,�)(⇢,�)(⇢,�) parameter space for
undirected uniform benchmarking networks. Parameter searches are performed
across a 100⇥100 grid with � 2 [0, 2] and ⇢ 2 [1, 100]. For each (⇢,�)-pair a synthetic
network of 20 nodes is generated, and community detection is performed using one of
(a) Newman-Girvan modularity, (b) the method of Expert et al. [16], or the one-step
method with (c) the common neighbours or (d) the unconstrained gravity model.
The y-axes and colourbar scale are the same for all heatmaps so have each only been
included once.

As can be seen in Table 2.2, the di↵erences in performance between methods

overall (⇢,�) combinations are on the scale of O(10�1), but the tuned, unconstrained

gravity model performs best. If we limit our scope to assortative graphs, the av-

erage NMI for � in the [0, 1]-range is 0.7859 for the unconstrained gravity model,

0.6327 for the unconstrained common neighbours model, 0.5935 for the Expert et al.

model and 0.47816 for the Newman-Girvan modularity. We, therefore, conclude that

the unconstrained gravity and common neighbours models yield the best predictive

performances for assortative community structures in these networks. The average

modularity for the tuned, unconstrained gravity model is also lower, indicating that

the null model more closely resembles the data [16].

Due to time constraints, we do not consider the common neighbours null model

any further after this point, but leave it as an illustrative example of how new spatial

null models might be developed.

Null Model Avg. Time Avg. Modularity Avg. NMI

Newman-Girvan 0.2687 0.2692 0.2687
Expert 0.0567 0.2251 0.3541
Gravity 0.0646 0.1330 0.4125
Common Neighbours 0.0633 0.0574 0.3469
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Table 2.2: Comparison of averaged scores across (⇢,�)(⇢,�)(⇢,�) parameter space for
undirected synthetic uniform networks. Parameter searches are performed with
� 2 [0, 2] and ⇢ 2 [1, 100]. Results show the average calculation time, modularity and
NMI scores for each method.

Directed networks We now turn our attention to directed graphs and limit our

parameter domain to the assortative regime of � 2 [0, 1] to compare the performance

of the unconstrained model with the three types of constrained models.

We generate directed versions of the synthetic spatial benchmarks, where there is

a directed net flow from the first to the second community. This is described in more

detail in Appendix B.3.1 and [10]. Over a 100 ⇥ 100 grid of parameter values, we

generate a single network of n = 20 nodes for each (⇢,�)-pair, optimise the modified

modularity function using spectral methods [35], then calculate the NMI between

the true and predicted predictions. Heatmaps for the results for both the gravity

and radiation models are included in Appendix B.4.1. The average NMI scores,

calculation time, and modularity across the domain are shown for the gravity model

family in Table B.1 and this is shown for the radiation model family in Appendix

B.4.1. The radiation model did not perform as well as the gravity model overall, and

the averaged NMI score for the doubly-constrained radiation model was 0.4016 in

contrast to 0.8545 for the gravity model

Null Model Avg. Time Avg. Modularity Avg. NMI

Unconstrained 0.0628 0.3545 0.8253
Production 0.0626 0.3395 0.8419
Attraction 0.0603 0.3422 0.8489
Doubly 0.0833 0.3322 0.8545

Table 2.3: Averaged results for one-step community detection using the
gravity model family on directed, uniform benchmarking networks. Pa-
rameter searches were run over with � 2 [0, 1] and ⇢ 2 [1, 100]. Results show the
average calculation time, modularity and NMI scores across the entire (⇢,�) domain.

Results: the two-step method

We now compare these results to those of the two-step community detection algo-

rithm described in Section 2.2.2. First, we extract the spatial backbone, using the

doubly-constrained gravity or radiation model, then we perform classical community

detection on the backbones, using the Newman-Girvan or Erdős-Rényi random graph

as a null model in the modularity function (1.3) where we use signed extensions as

described in Section 2.2.2.
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We again generate 100 ⇥ 100 directed and assortative synthetic spatial graphs,

with n = 20 nodes, � 2 [0, 2], and ⇢ 2 [1, 100]. Heatmaps show the resulting NMIs

for the doubly-constrained gravity (left) and radiation (right) models with Newman-

Girvan or Erdős-Rényi null models in Figure 2.7, and the findings are summarised in

Table 2.4. We note that the gravity model outperforms the radiation model on the

scale of O(10�1).

(a) Newman-Girvan (b) Erdős-Rényi (c) Newman-Girvan (d) Erdős-Rényi

Figure 2.7: Normalised mutual information scores for two-step spatial com-
munity detection using the doubly-constrained gravity(top) and radiation
(bottom) null models. The left panel shows the results using a Newman-Girvan
null model and the right panel shows the results using an Erdős-Rényi null model.

Null Model Backbone Benchmark Avg. Time Avg. Modularity Avg. NMI

Newman-Girvan Gravity Uniform 0.065 0.0194 0.6315
Erdős-Rényi Gravity Uniform 0.0607 0.0206 0.6776
Newman-Girvan Radiation Uniform 0.0548 0.0348 0.6811
Erdős-Rényi Radiation Uniform 0.0525 0.0385 0.5711

Table 2.4: Averaged NMI scores, modularity scores and calculation times of the
two step method as in Section 2.2.2 across (⇢,�) parameter space using the signed
Newman-Girvan or Erdős-Rényi modularities with doubly-constrained gravity or ra-
diation spatial backbones.

Comment on results For the gravity model, performance for the two-step method

su↵ers compared to the one-step method. This is particularly pronounced for sparse

graphs, which is likely a result of the backbone extraction. For very sparse graphs,

not enough edges will be extracted to produce meaningful results. For dense, assor-

tative graphs, however, the performance is good, with NMI scores near unity. The

performance of the radiation model actually improves for the two-step procedure, and

it performs better than the gravity model in sparse regimes. For higher edge densities

⇢ > 10, we see this performance drop as the gravity model’s performance improves.
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This decrease in performance of the radiation model for high edge densities is also

observed in [10] for stochastic block model methods.

We note from Table 2.4 that the radiation model performs better with the Newman-

Girvan null model and the gravity model performs better with the Erdős-Rényi null

model. Like the configuration model, the gravity null model ‘controls’ for degree,

so in e↵ect, this is being done twice when the gravity model is combined with the

Newman-Girvan null model. This possibly explains why we see the gravity model’s

performance drop for the Newman-Girvan null model compared to the Erdős-Rényi

null model.

For both the one and two-step methods, the gravity model outperforms the radi-

ation model over the entire (⇢,�)-space. However, we note that the uniform model

is based on the gravity model, so the gravity model shares more commonalities with

this data. It is possible that some overfitting is at play here, and we cannot as-

sume that the gravity model will generalise better without testing these models on

more synthetic networks. We turn to a di↵erent synthetic model, the correlated group

membership model of Cerina et al. to further study the performance of these methods.

The correlated group membership model

The uniform model constructs a network where space and other attributes are uncor-

related; node attributes and locations are randomly assigned, and it is necessary to

correct for space in order to uncover attribute communities. Cerina et al. [9] highlight

that if there exists some unknown degree of correlation between space and attributes

then this must be accounted for in our methods. In fact, if space and attributes

are strongly correlated, then the removal of spatial e↵ects can result in less accurate

results [9, 10]. Cerina et al. propose a model where the degree of correlation between

some binary attribute and space is a tunable parameter, thus allowing us to explore

the e↵ectiveness of our methods on di↵erent degrees of spatial correlation in attribute

communities.

The parameter ✏ is used to control how correlated space and community are, where

✏ = 0.5 corresponds to the fully random case and ✏ = 0 corresponds to community

being completely determined by space. The parameter � controls the role of space

in link formation. The � � 1 regime corresponds to space having no impact on

link formation while the � ⌧ 1 regime corresponds to space being the main factor.

Figure 2.8 shows two extremes of this model and a more thorough discussion of the

construction of these networks is given in Appendix B.3.2 and in the papers [10, 9].
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(a) (b)

Figure 2.8: Two extremes of the correlated group membership model by Cerina et al.
[9, 10] generated according to B.3. Setting (a) ✏ = 0.0 results in attribute assignment
being fully dependent on space, while (b) setting ✏ = 0.5 generates a random network
where space and attributes are entirely uncorrelated1.

Results

Leal Cervantes uses the benchmarks of Cerina et al. with ✏ = {0.0, 0.5} and � varied

logarithmically in the range [0.1, 10] to benchmark the performance of stochastic block

models applied to the spatial backbones.

For each parameter search in this section, we adapt code from [10] to generate

the correlated synthetic networks of size n = 20 nodes, with a high edge density of

⇢ = 100 and a binary partition of nodes, and perform similar parameter searches for

the one- and two-step methods. Figures 2.9 (a)-(d) show the average NMI for varying

� 2 [10�1, 10] for a fixed ✏, with error bars denoting one standard deviation.

1
The code used to generate these graphs is adapted from code by Leal Cervantes https://

github.com/rodrigolece/spatial-nets.
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(a) (b)

(c) (d)

Figure 2.9: Error bar plots of average NMI for di↵erent values � and ✏
in the correlated group membership model. Results for the correlated group
membership model (Appendix B.3.2 or [9]) when performing modularity community
detection on gravity (left) and radiation (right) backbones. For each spatial null
model and constraint, 10 directed networks were constructed with 20 nodes, edge
density ⇢ = 100 and ` = 1, and � was varied on a logarithmic scale in [10�1, 101].
The top row uses ✏ = 0.5 which creates networks where space and attributes are
completely uncorrelated and the bottom row shows results for ✏ = 0.0 where space
and attributes are fully correlated. The � � 1 regime corrresponds to space having
no impact on link formation while the � ⌧ 1 regime corresponds to space being the
main factor. The error bars here represent one standard deviation.

The trends we observe follow a similar pattern to those in [10]. The gravity and

radiation models perform similarly for the uncorrelated case of ✏ = 0.5 while the

gravity models perform better than the radiation models for the fully-correlated case.

From these results, we understand that in the completely uncorrelated case (✏ = 0.5),

the one-step methods work best when space does not play a significant role in link

formation. In the fully-correlated case, the gravity model works well whether or not

space plays a significant role in link formation, though it works best when it does

not. For the radiation model, there is a clear distinction for �-values below or above

1, though it observes a far smoother transition in the ✏ = 0.5 case than for the SBMs

in [10]. When space has an impact on link formation, the radiation model does not

perform well, but performance increases rapidly as � increases. Observing the scale

on the y-axis, we note that for the fully-correlated case the radiation model produces
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partitions with lower NMI scores in general.

Results: the two-step method

We repeat the same parameter search for the two-step procedure, and the results

are similar to those in Figure 2.9. These are shown in Appendix B.4.1. A table

summarising the average NMI for each (✏, null model)-combination is provided in

Table 2.5.

✏ = 0.0 ✏ = 0.5
gravity radiation gravity radiation

ER 0.859299 0.645152 0.679714 0.705310
NG 0.904397 0.589243 0.711061 0.672457

Table 2.5: Average NMI for di↵erent two-step methods. The doubly-
constrained gravity model performs better with the Newman-Girvan modularity,
while the doubly-constrained radiation model performs better with the Erdős-Rényi
modularity.

Comment on results For the correlated group membership model, the gravity

model performs well, except in the case where space has a strong impact on link for-

mation and space and attributes are correlated (✏ = 0, � ⌧ 1). In this case, removing

space will also remove information about community structure. The radiation model

performs slightly better for the two-step method though results are not on par with

those of the gravity model.

2.3.2 The maritime shipping network

Next, we apply these methods to the container ship network and compare them to

the results of Newman-Girvan community detection in Chapter 1.

The one-step method For the one-step method we detect communities by using

the doubly-constrained gravity null model (2.8) in the modularity function (2.4). Fig-

ure 2.10 shows the adjacency matrices for the (a) 2019 and (b) 2020 networks, where

nodes are ordered first by community assignment and secondly by degree. Figure

2.11 shows ports plotted spatially for the 2019 network, with community assignment

denoted by colour. All community detection in this section is implemented using a

resolution parameter of � = 0.2, which we found gave a small number of communities
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across methods, which facilitated interpretation of results. Further results for the

2020 network are included in Appendix B.4.2.

(a) 2019 (b) 2020

Figure 2.10: Adjacency matrices for spatially-corrected community detec-
tion on the 2019/2020 shipping network. Here, black points indicate the pres-
ence of an edge, and nodes are ordered by community and by degree within com-
munities. Colour bars denoting community are included below and to the right of
each matrix. Communities are detected using the one-step method with the doubly-
constrained gravity model.

On a broad level, comparing the communities in the spatially-corrected 2019 net-

work, Figure 2.11 to the Newman-Girvan results for the same resolution in Figure

A.5, where communities appear to be mostly determined by continent, we see there

a clear shift. The gravity model gives more weight to trading routes across major

oceans, and two clear groups of ports involved in trans-Pacific trade, or transatlantic

trade, emerge. This grouping did not appear in the Newman-Girvan results for any

resolution values. We consider this is a sensible result. In 2019, mainlane East-

West containerised trade routes, namely Asia-Europe, transatlantic and trans-Pacific

routes, dominated the market, handling 39.1% of the market share of globalised trade

[45]. We see a similar grouping in the 2020 network and note that the Latin American

group, which is isolated in Figure 2.11, rejoins the Atlantic group while a community

consisting of 14 ports in the Great Lakes Maritime System becomes isolated.
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(a) 2019

Figure 2.11: Visualisation of spatially-corrected communities detected using
the one-step method with the doubly-constrained gravity model on the
container ship network. Ports are shown in their spatial locations and groupings
are denoted by colour. At resolution � = 0.2 five communities are found, 47% of ports
are placed in a group which encompasses mostly trans-Pacific routes (teal), and 49%
of ports are placed in a group which contains mostly transatlantic routes (orange). A
group of 26 Latin American ports is shown in purple. Not visible in this figure, six
Indonesian communities are also divided into two separate groups.

Since the gravity model is explicitly distance-based, it is not surprising that it

favours lengthy transatlantic and trans-Pacific crossings. However, we must also

consider that this gravity model is now attributing inflated importance to journeys

across major oceans due to the huge geographic distances associated with them. In

this respect, aspatial and spatially corrected results are best viewed in conjunction, as

we are then able to identify bias in either model by considering it in comparison to the

other. In general, however, we see that the gravity model can e↵ectively remove the

spatial bias which grouped ports by continent, and uncovers a more global perspective

of containerised trade relationships which better aligns with observations based on

market shares and trade volume in [45].

The radiation model is an intervening-opportunities model, it is based on the

number of intermediate nodes between ports rather than the geographic distance

between them. Thus we do not expect trans-oceanic voyages to be attributed quite

as much importance. Across most resolutions, the results of the doubly-constrained

radiation model were somewhat less structured than those of the gravity model. In

light of this, and since the radiation model did not perform particularly well on the
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benchmarking networks, we have included the full results in Appendix B.4.2 and only

summarise them here.

Using resolutions of �  0.5, the doubly constrained radiation-based modularity

groups all the ports into a single group. For � = 0.8, both the 2019 and 2020 groups

are split into two communities that exhibit very little logical organisation. One group

has Shanghai, Pusan (South Korea), and Hong Kong as its ports with the largest

degree, while the other has Singapore, Ningbo (China), and Rotterdam. We leave

addressing the interpretation of this to future work and now consider the performance

of the radiation model using the two-step method.

The two-step method The results for the two-step method using the doubly-

constrained radiation for the 2019 shipping network are shown in Figure 2.12, where

communities are denoted by colour. The two-step method detected 14 communities

for 2019 and 15 communities for 2020. The communities detected di↵er in structure

from any detected by the one-step method or the Newman-Girvan method. Ports in

communities of size less than 30 are shown in white for visual clarity, which reduces

the number of visible communities to ten. The groups of size less than 30 in the 2019

network include a group of 22 ports from Brazil, Argentina, Japan, Uruguay, and the

Democratic Republic of Congo and two small communities of Indonesian ports.

Figure 2.12: Visualisation of spatially-corrected communities detected using
the two-step method with the doubly-constrained radiation model and
Erdős-Rényi modularity [13] on the 2019 container ship network. Ports are
plotted in their spatial locations with community denoted by colour. The methods
detected 14 communities � = 0.2. Ports in communites of size less than 30 are shown
in white for visual clarity, which reduces the number of communities to ten.
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The community pattern in Figure 2.12 most closely resembles the Newman-Girvan

partition for � = 0.8 (shown in Appendix A.3b). The main di↵erences are the

East-West division of the American continent (both coasts are of North America

are grouped together for all resolutions when using the Newman-Girvan model), Sin-

gapore is no longer grouped with the Southeast Asian nations but with the larger

Middle Eastern and Southern Asian group, which better reflects its major role in the

maritime trade system. Additionally, the communities appear slightly more dispersed

than in the Newman-Girvan model results, the predominantly Northern European

group has a number of North and West African members, as well as five North and

one South American member.

In general, the radiation model attributes less import to transatlantic and trans-

Pacific crossings than the radiation model but still identifies a di↵erent community

structure to the Newman-Girvan model.

36



Chapter 3

Spatially-Corrected
Core-Periphery Detection

Core-periphery (CP) structures are meso-scale structures that contain both assor-

tative and disassortative substructures. Classically defined for undirected networks,

core-periphery pairs consist of an assortative and densely connected core and a dis-

assortative and sparsely connected periphery. In many definitions [13, 36], the con-

nections between core and peripheral nodes are also required to be dense. Nodes

in the core are considered to be well-integrated in the network whilst nodes in the

periphery are regarded as more isolated and as performing less important roles in the

functioning of the network.

There is a multitude of papers across the disciplines of economics, neuroscience,

trade theory, and geography concerned with the existence, identification, and impli-

cations of core-periphery structures [47, 24, 21, 7, 4, 41]. In transportation networks,

core-periphery structures may have economic implications which contribute to un-

even development. They can be used to understand the level of integration of regions

across trade networks [24, 22], or determine the resilience of a network to di↵erent

forms of failure. A network with a pronounced core-periphery structure has been

found to be robust against random failure but sensitive to targeted attacks [21].

Core-periphery is, however, an aspatial concept: algorithms determine the core-

periphery status of a node based solely on the topology of the network. In spatial

networks where space plays a role in link-formation, this may lead to trivial results.

Groups of nodes lying in close spatial proximity may be identified as playing artificially

inflated core roles in the network. Similarly, a node that is geographically isolated

but relatively well-connected, considering its spatial location, may be identified as

less integrated with the system than it truly is.
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A second limitation of classical core-periphery detection is that it is defined for

undirected networks. Potentially useful information contained in the directionality

of the network is not considered when implementing core-periphery algorithms. In

trade networks, the di↵erentiation between manufacturing and consuming economies

is particularly important and the ability to classify a port as a major exporter or

importer is useful and relevant.

In this section, we synthesise the work of three papers [10, 13] and [44]. We

utilise the spatial backbones developed by Leal Cervantes [10] which we covered in

Chapter 2, this time to perform spatially-corrected core-periphery detection. This we

integrate with the work of Elliot et al. [13] who propose a method for core-periphery

detection in directed networks involving the optimisation of a directed core-periphery

(DCP) modularity function. We return to the logic of Traag in [44] to extend this

measure to signed networks, which allows for its direct application to the spatial

backbones. We develop a novel extension of the directed core-periphery benchmarks

used by Elliot et al. to a spatial setting by including space as a contributing factor in

link-formation. Once again, these developments are applied to the maritime container

ship network. The resulting directed and spatially-unbiased core-periphery partitions

are then compared to the results of the classical Borgatti-Everett [7] and Rombach [36]

core-periphery detection methods, which are applied to the symmetrised backbones.

3.0.1 Directed core-periphery detection

According to the definition of [13], an idealised directed core-periphery structure oc-

curs when the vertices in a network vi 2 V can be divided into four groups. First, there

is an out-periphery Pout: peripheral nodes that only have outgoing edges. These out-

going edges connect to the in-core Cin which has only incoming edges and links between

di↵erent Cin nodes. Next there is an out-core, Cout consisting of only outgoing edges

and links between di↵erent Cout nodes. Lastly, there is an in-periphery Pout which

only has incoming edges (from Cout). The partition of V into P = {Pout, Cin, Cout,Pin}

creates an adjacency matrix with the following block structure:

M =

2

664

0 1 0 0
0 1 0 0
0 1 1 1
0 0 0 0

3

775

Pout

Cin

Cout

Pin

where each entry Mij represents a group of nodes.
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Pout Cin Cout Pin

Figure 3.1: Schematic of flows in the idealised directed core-periphery structure.

In Elliot et al. [13], an adaptation of the classical modularity function [30] is used,

where the community indicator �gigj is replaced by the block matrix Mgigj . They

define the directed core-periphery modularity as

DCPM(g) =
1

m

nX

i=1

nX

j=1

⇣
Aij � Âij

⌘
Mgigj (3.1)

where gi 2 {Pout, Cin, Cout,Pin} is the set which node vi is assigned to [13]. This mea-

sure lies in (�1, 1) and, just like classical modularity, has a value of 0 for the trivial

partition into one community. The null model used in this case Â = m/n2, is the

Erdős-Rényi null model. In core-periphery detection the core nodes are expected to

have higher degrees than the peripheral nodes, so using null models that control for

degree such as the configuration model, may actually obscure core-periphery struc-

tures. This is proved by Kojaku et al. [21] who show that is impossible to detect a

single core-periphery structure using the configuration model, unless we incorporate

more blocks, be they other core-periphery structures, other community structures or

a set of nodes without structure.

3.0.2 DCP detection on the spatial backbone

Since we are now dealing with a signed network things become a little more compli-

cated. We cannot directly apply the methodologies described in Elliot et al. to the

spatial backbones as the signed network would return meaningless results. We revisit

Traag’s discussion of modularity clustering on signed networks for inspiration [44].

In Traag’s discussion of partitioning signed networks [44], it is shown that cal-

culating the modularity using the Newman-Girvan null model for a signed network

yields meaningless results. We include here a similar constructive example for an

undirected core-periphery structure, where calculating the undirected core-periphery

modularity (CPM) using the Erdős-Rényi null model also yields unhelpful results.

We will assume this proof is su�cient to conclude that the same limitation applies
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in the directed core-periphery modularity (DCPM). The sample signed network with

our definition of signed core-periphery structure is shown in Figure 3.2 and has nc = 4

nodes in its core, which is a complete graph of positive links. It has a periphery of

np = 4 nodes which is also a complete graph, but of negative links. Each node in the

periphery is connected to a di↵erent node in the core by two positive links.

Figure 3.2: Example undirected core-periphery structure in a signed net-
work. Positive links are represented by blue edges and negative links are represented
by red edges.

Using a discrete block-structure definition of core-periphery structure [13, 7], the

undirected core periphery structure for an unsigned network here is given as

CPM =
1

2m

nX

i,j=1

⇣
Aij �

m

n2

⌘
Mgigj (3.2)

The total flow m of the network is m =
�
4

2

�
�
�
4

2

�
+ 8 = 8. Thus the contribution to

the CPM of a link between core nodes is

Aij �
m

n2
= 1�

1

8
=

7

8
.

For two nodes in the periphery

Aij �
m

n2
= �1�

1

8
=

�9

8

and for links between the core and the periphery, we obtain

Aij �
m

n2
= 1�

1

8
=

7

8
.

Since the periphery is disassortative the modularity function is increased by placing

peripheral nodes in separate groups. Also, the positive links between the core and

peripheral nodes suggests core and peripheral nodes should be grouped together.

Altering the block matrix M =

✓
1 1
1 0

◆
to M =

✓
1 1
1 �1

◆
would resolve the negative

contribution to the CPM for negative links between the peripheral nodes but does not
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address the positive contribution from core-to-periphery links. The total flow m = 8

of the network is simply to small due to the presence of negative links. Thus, we see

that we cannot simply extend the DCPM definition provided in Elliot et al. [13] to a

signed network.

We propose to extend the logic of Traag [44] to the case of the directed core-

periphery detection on signed networks as follows: as usual, we seek to maximise the

number of positive edges within the core and maximise the number of positive edges

between core and peripheral nodes. In our signed network, negative edges indicate

that there is less connection between a pair of nodes than would be expected under our

spatial null model. In this case it makes sense that we do not want there to be many

negative edges within the core but we do want there to be plenty of negative edges

between peripheral nodes. Thus, with the positive and negative spatial backbones

denoted as �+ and ��, respectively, we define the objective function, which we wish

to maximise, for the positive backbone as

DCPM+ =
nX

i=1

nX

j=1

✓
�+

ij �
m+

[n+]2

◆
Mgigj , (3.3)

where we have dropped the leading coe�cient, and n+ and m+ are the number of

nodes and edges in the positive backbone, respectively. Analogously, we define the

objective function for the negative backbone as

DCPM� =
nX

i=1

nX

j=1

✓
��

ij �
m�

[n�]2

◆
Mgigj (3.4)

and in this case we seek to minimise this quantity. Here we use the Erdős-Rényi null

model. Like in [44], this is equivalent to maximising the negative of DCPM�, and we

can combine the maximisation of DCPM+ and DCPM� into one objective function

as

DCPM =
nX

i=1

nX

j=1

✓
�ij �

✓
m+

[n+]2
�

m�

[n�]2

◆◆
Mgigj (3.5)

where � = �+
� ��. Additionally, the number of nodes remains the same in both

backbones n+ = n� = n, so we obtain

DCPM =
nX

i=1

nX

j=1

✓
�ij �

✓
m+

�m�

n2

◆◆
Mgigj (3.6)

Thus, the extension of the directed core-periphery detection to signed networks

may be boiled down to simply replacing the null model Â with Â+
�Â� in the directed

core-periphery modularity function (3.1).
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Elliot et al. compare a number of optimisation algorithms to optimise the DCPM

[13]1. Of these methods, we choose to modify the Advanced HITS (AdvHITS) al-

gorithm, an extension of the Hyperlink-Induced Topic Search (HITS) algorithm [20].

We chose AdvHITS it performs well with respect to both speed and accuracy. An

overview of the AdvHITS algorithm and some further details regarding the optimi-

sation of the DCPM are given in Appendix C.0.1 and C.0.2.

3.1 Results

3.1.1 Synthetic networks

We construct a simple spatial extension of the directed core-periphery networks de-

scribed in [13], where a more complete discussion of the network is provided. As in

Elliot et al. the network is partitioned into an out-periphery, an in-core, an out-

core and an in-periphery, {Pout, Cin, Cout,Pin} and the idealised block structure of this

partition has the ‘L’ shape.

M =

0

BB@

0 1 0 0
0 1 0 0
0 1 1 1
0 0 0 0

1

CCA

Pout

Cin

Cout

Pin

In [13], links in the synthetic networks are distributed according to

M =

0

BB@

p2 p1 p2 p2
p2 p1 p2 p2
p2 p1 p1 p1
p2 p2 p2 p2

1

CCA

Pout

Cin

Cout

Pin

.

We mimic the first form of this benchmark proposed in [13] and use only one proba-

bility p 2 [0, 0.5] such that

(p1, p2) = (0.5 + p, 0.5� p). (3.7)

To extend this to a spatial setting, we make the following adjustments: each node

is randomly assigned to a spatial location and a pairwise distance matrix (dij) is

constructed from the coordinates. Each entry of the probability matrix pij is then

multiplied by d�`
ij , where ` is a parameter which can be specified, and the probability

of an edge eij becomes

1
Original code is available at: https://github.com/alan-turing-

institute/directedCorePeripheryPaper
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pij =
1

Z

 
Mgigj

d�`
ij

!
(3.8)

where Z is a normalisation constant such that
P

i 6=j pij = 1. The edge density may

specified be specified using the parameter ⇢ > 0 in the same way as the uniform [16,

10] and correlated group membership models [9, 10], and ⇢n(n � 1) edges will be

placed in the network. In this way, link probabilities in the synthetic benchmark are

controlled by both the core-periphery structure and the pariwise distances between

nodes. 2

Figure 3.3: Synthetic spatial network with ideal directed core-periphery
structure Network with link probabilities determined by (3.8) with p = 0.5, ` = 2
and ⇢ = 1. Purple represents the in-core, teal the out-core, green the in-periphery
and orange the out-periphery. Nodes are plotted spatially on the left and according
to NetworkX’s spring-block layout on the right.

The heatmaps in Figure 3.4 (a)-(b) visualise the adjacency matrix of a spatial

DCP benchmark with a near-ideal block structure with p = 0.48, with its corre-

sponding positive and negative backbones, extracted using the doubly-constrained

gravity (blue) and the doubly-constrained radiation (red) null models.

2
More sophisticated benchmarks, say, by introducing parameters controlling the strength of the

spatial e↵ects or the degree of correlation between directed core-periphery assignment and space,

similar to the work of Cerina et al. [9], would be useful to fully validate the performance of this

algorithm, but we will consider that beyond the scope of this dissertation.
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Figure 3.4: Backbones of synthetic spatial directed core-periphery networks
with an almost-ideal directed core-periphery structure (p = 0.48). Backbones
are extracted from a network of 200 nodes using the doubly-constrained gravity null
model (blue), and the doubly-constrained radiation null model (red). All matrices
are binary and lighter colours correspond 1s and darker colours correspond to 0s.

Both positive backbones generally identify the full DCP block structure, but the

gravity model misses the bend of the ‘L’ structure (Cout ! Cin). A possible explanation

for this is the high out-degree of nodes in Cout and the high in-degree of nodes in Cin,

which causes the gravity null to estimate very high predicted fluxes between these

groups. Kojaku, Sadamori, and Masuda prove in [21] that degree-controlled methods

often ‘mask’ core-periphery structure and, since the gravity model controls for degree,

this is a possible limitation of the gravity model in this context. The positive radiation

backbone, however, performs better in this respect. Both of the negative backbones

mistakenly identify negative edges within the ‘L’ structure and miss the blocks below

and to the left of the main ‘L’ structure.3

Applying our modification of the AdvHits algorithm to the positive gravity and

radiation backbones returns NMI scores of 0.6265 and 0.9696 for the predicted par-

titions, respectively, compared to the known partitions. Thus, the radiation-based

backbone performs better here in the almost ideal block-structure case.

Directed confusion matrices To further investigate this, we generate confusion

matrices where each column shows the percentage of times nodes in a network gener-

ated by (3.8) with true assignments in {Pout, Cin, Cout,Pin} are assigned to each group.

We visualise the results obtained using the doubly-constrained gravity backbone for

p-values in [0.1, 0.2, 0.3, 0.4] in Figure 3.5 (a) with and (b) without the negative back-

bone. In this case, the algorithm actually performs better when the negative backbone

3
The author of [10] has previously noted that the methodology for extracting the negative back-

bone has some remaining limitations. The negative backbone has a tendency to be either too sparse

or too dense relative to the positive backbone. This may be due to increased noise associated with

smaller entries, or the fact that the algorithm only considers nonzero entries of the adjacency matrix,

i.e., a non-existing edge cannot become an edge in the negative backbone.
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is ignored. Heatmaps showing similar results for the radiation backbone are included

in Appendix C.1.

(a)

(b)

Figure 3.5: Confusion matrices for the directed core-periphery algorithm
using the doubly-constrained gravity backbone of a directed graph with
known core-periphery structure. For each p-value, 20 random synthetic net-
works with known core-periphery structure are constructed according to (3.8) and
the AdvHits [13] algorithm applied to them. The columns of the confusion matri-
ces show the percentage of times core and periphery nodes were assigned to each of
{Pout, Cin, Cout,Pin}.

3.1.2 The maritime shipping network

In this section, we present a selection of results produced when our methods for spatial

connection are applied to the 2019 container shipping network. Ports are assigned

to the out-periphery Pout, in-core Cin, out-core Cout, or in-periphery Pin using first

the unmodified DCP method of Elliot et al. [13], then incorporating spatial e↵ects

by extracting the doubly-constrained gravity and radiation spatial backbones, using

the methods of Leal Cervantes [10], and applying the modified DCP method to these

backbones.

We find that the gravity model uncovers regional roles played by ports that were

masked by the broader spatial structure of the network, while the radiation model
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unveils some cultural or economic a�nities that were not detected in the original

network. Figures 3.6 and 3.9 show ports from the 2019 network colour-coded by their

assignment to one of {Pout, Cin, Cout,Pin} and plotted geographically.

Figure 3.6: Directed core-periphery (DCP) detection (aspatial) on the 2019
shipping network. Container ship ports visualised in their spatial locations and
colour-coded according to their assignment to one of {Pout, Cin, Cout,Pin}. The in-
core group is shown in purple, the out-core group is shown in teal, the out-periphery
group is shown in orange, and the in-periphery group is shown in green. Results were
obtained using the methods of Elliot et al. in [13]1.

The left panel of Figure ?? visualises the block structure between groups detected

by the aspatial method, and the right-hand panel of Figure ??, and Figure 3.8 shows

confusion matrices comparing results of the aspatial and spatial DCP methods to

those of the classical, undirected core-periphery (CP) detection methods by Borgatti

and Everett [7] and Rombach [36]. The left panel of Figure 3.10 visualises the NMI

scores between the sets of labels detected by the DCP algorithms and the right panel

of Figure 3.10 shows the distibution of ports across each group for each DCP method.

1
https://github.com/alan-turing-institute/directedCorePeripheryPaper
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Figure 3.7: Block structure (left) and confusion matrix with results of
the Rombach method [36] (right) for aspatial core-periphery results on
the 2019 shipping network. Visualisation of the percentage of edges (column-
normalised) between blocks detected by the DCP methods of Elliot et al. (left-panel)
show a slightly di↵erent block structure to that in [13]. The confusion matrix on the
right shows the distribution of nodes identified by the Rombach between the four sets
{Pout, Cin, Cout,Pin}.

Figure 3.8: Confusion matrices for the results of directed vs. undirected
core-periphery detection on the 2019 shipping network with spatial cor-
rection. Confusion matrices for the results of the DCP method vs. results of the
Borgatti-Everett and Rombach algorithms [7, 36]. Methods were applied to the pos-
itive spatial backbone, which was extracted using the doubly-constrained the gravity
model (left) and the doubly-constrained radiation model (right).

47



(a) Directed (gravity model-corrected) core-periphery detection on the 2019 net-

work

(b) Directed (radiation model-corrected) core-periphery detection on the 2019 net-

work

Figure 3.9: Directed (spatially-corrected) core-periphery detection on the
2019 network. Container ship ports visualised in their spatial locations and colour-
coded according to their assignment to one of {Pout, Cin, Cout,Pin}. Results were
obtained using the DCP methods of Elliot et al. in [13] and the spatial-backbone
extraction methods of Leal Cervantes [10]1 to account for spatial e↵ects using (a) the
doubly-constrained gravity model, and (b) the doubly-constrained radiation model.
Note that more ports are assigned to out-core and in-periphery when the gravity
model is used, compared to the other two cases.

1
https://github.com/rodrigolece/spatial-nets
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Figure 3.10: Mutual NMI scores (left) and percentage of nodes assigned to
each group (right) for all three DCP detection methods. The NMI scores
between the sets of labels produced by each of the aspatial DCP detection, and the
spatially-corrected DCP detection using the doubly-constrained gravity and radiation
backbones, are shown in the heatmap on the left. The percentage of nodes assigned to
each of {Pout, Cin, Cout,Pin} for each DCP detection method is shown in the heatmap
on the right.

The overall DCP pattern is relatively consistent across all three methods. Asia

and Middle Eastern ports, including the major ports of Singapore and Shanghai, are

assigned to the in-core while the majority of European and North American ports are

consistently assigned to the out-core. This is a surprising result, due to Asia’s status

as a manufacturing hub, we would expect it to be assigned to the out-core. Asia

is, however, a major importer of raw materials so this may be down to some supply

chain structures. From the symmetry in the block structure visualisations on the left

panel of Figure 3.7, we can see the groups out- and in-connectivities only di↵er by a

small number of edges, so there is not a huge di↵erence between the functional roles

played by core blocks. This block structure is actually more similar to a di↵erent

case (A.7) mentioned in the Supplementary Information of Elliot et al. where there

is an out-core, an in-core, and two out-peripheries. There is also a very low volume of

flow between the out- and in-cores which suggests that the network might be better

divided into two core-periphery pairs or global community structure with internal,

local core-periphery structures.4

The spatially-corrected model with the radiation backbone is more similar to the

aspatial case, but the gravity model reassigns 337 ports (⇠40% of the network) in the

2019 network from Pout to Pin and reassigns ten ports (⇠1%) from Cin to Cout. We

4
We note that the level of connectivity between the two cores may appear artificially low here.

The edges in this network are unweighted so container ships of large or small capacities contribute

the same values to the flow count. We expect major container ports to have many high-capacity

container ships travelling between them, compared to smaller ports. Including this information may

increase the observed connectivity between cores.
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find that spatial correction using the gravity model uncovers a number of regional

hubs in Latin America (e.g. Bahia De Valparáıso and San Antonio in Chile), Oceania,

Scandinavia, and West and Central Africa, mainly serving local smaller ports. These

core ports are identified as in-connectivity ports in the original network due to the

large number of in-flows they receive from major ports such as Singapore, Shanghai,

and Hong Kong. These links are removed when the spatial backbone is extracted

using the gravity model, unveiling more regional, out-connectivity roles the ports

play.

In the aspatial and gravity-corrected spatial results, Honolulu (Hawaii) is assigned

to Pout. The radiation model, however, reassigns Honolulu to Cin instead. Honolulu

is not well-connected in the container ship network, however, it is part of the U.S.A.

Culturally and economically it is much better integrated with North America than

other Pacific Islands with a similar degree of geographic remoteness. This suggests

that the correction using the radiation model can discover some cultural and economic

a�nities that were masked by space in the original network.
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Chapter 4

Conclusions

Throughout this dissertation, we have considered a wide variety of methods to remove

spatial bias from community and core-periphery detection methods. In Chapter 1

we surveyed the background theory for community detection and spatial networks

and performed some preliminary, classical community detection on the network of

container ships. In Chapter 2 we presented two methods for spatially-correcting

community detection algorithms. The first method, which we referred to as the one-

step method, involved directly modifying the null model of a modularity function to

incorporate space. We took a new approach to this and extended the problem to di-

rected networks by introducing the dimensionally constrained models of Wilson [49,

10] as null models, and using Leicht and Newman’s approach to make the resulting

asymmetric modularity matrices suitable for spectral partitioning [35]. In addition,

we discussed a more general approach, which we named the two-step method. This

method built on the methodology proposed by Leal Cervantes [10] to extract spa-

tial backbones from a network, over which the modularity could then be optimised.

We followed Traag’s approach [44] to modify the modularity problem for signed net-

works. In addition to this, we formulated a novel mobility model inspired by the

work of Kosowska-Stamirowska and Zusanna [23], the common neighbours+sea dis-

tance model. This model requires further testing but performed well on undirected

benchmarking networks. In Chapter 3 we combined two recently proposed techniques

for core-periphery detection and introduced both spatial-correction and directionality

to the problem by making use of the spatial backbones and dimensionally-consistent

spatial null models of Leal Cervantes [10], and the directed core-periphery methodol-

ogy of Elliot et al.[13]. We developed a signed extension of the directed core-periphery

modularity of Elliot et al. and optimised this over the extracted spatial backbones.

Overall, the gravity model-based methods outperformed the radiation model-

based methods and produced more easily interpretable results on the shipping net-
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work. Applied to the community detection problem, the gravity model prioritised

mainlane East-West trading routes across major oceans which were not identified

by the classical methods. In the core-periphery problem, introducing the gravity

model uncovered the more regional roles played by some ports in the network. In

the core-periphery detection problem, the radiation model also appeared to identify

some ports, such as Honolulu (Hawaii), that were relatively well-connected despite

their geographic isolation and as such, uncovered a�nities that were not evident in

the classical analysis.

Assumptions and limitations of this work A number of assumptions were made

throughout this dissertation and we wish to acknowledge some of the limitations of

the work. Firstly, the benchmarking networks used were highly simplistic. In par-

ticular, the spatial and directed core-periphery synthetic network in Chapter 3 could

be made more realistic. A more realistic model would involve introducing an element

of correlation between space and group assignment, similar to the benchmarking

networks of Cerina et al.[9]. In transport networks, cores or hubs may develop in

convenient, e.g., central, geographically central locations. Synthetic networks where

geographically central nodes are more likely to gain core status would be more real-

istic. Additionally, as noted by the author of [10], the negative backbone procedure

still needs improvement. At present, it does not consider zero edges as candidates

for the negative backbone and it seems to be a↵ected by a high degree of noise. For

this reason, a number of the algorithms applied to the shipping network only used

the positive backbone, as the results including the negative backbone were not easily

interpretable. Once this methodology has been improved, it would be interesting to

re-run these methods using both backbones. Additionally, we noted in Chapter 3

that the gravity model was not an ideal candidate to use in spatially-corrected core-

periphery detection as it controls for degree heterogeneity. Since degree disparities

between the core and the periphery are a key feature of core-periphery structures,

controlling for them may remove too much information and obscure core-periphery

structures. A more systematic exploration of the suitability of di↵erent mobility mod-

els for spatially-corrected core-periphery detection would be valuable in this respect.

Finally, in the interest of notational clarity, the shipping network used was un-

weighted and did not include information about the volume of cargo carried by ships.

This is slightly misrepresentative of true trade intensity between ports, and in partic-

ular, underestimates trade between major ports that are frequented by large vessels

with high capacities. A weighted version of this network is available [48] and the
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algorithms do not need to be modified in order to be applied, so a further analysis

using the weighted network may yield di↵erent insights.

Further work The results of this dissertation highlight many potential avenues

for further work. The empirical network used is a large network of over 1000 nodes

and interpreting the results requires both time and relevant expertise. It would be

interesting to further investigate these results to see what more information they

contain. In Chapter 3, we noted that the block structure observed when applying the

directed core-periphery methods of Elliot et al. to the shipping network only loosely

agreed with the ideal structure in their main paper. It bore a closer resemblance to

a di↵erent block structure (A.7) which was given in the Supplementary Information.

This raises the question of whether a di↵erent directed core-periphery structure might

be more suited to this network. Modifying the algorithm of Elliot et al. to explore

other possible structures is another direction for future work.

In addition, it has been observed that the global shipping network has a hier-

archical structure [50]. A procedure that combines the methods of Chapter 2 and

Chapter 3 to detect local core-periphery structures within communities, would be

an interesting extension. In particular, it would be interesting to compare results

of these methods to those of Kojaku [21, 22] which identify multiple core-periphery

structures within a network. Finally, it would also be interesting to pursue the com-

mon neighbours+sea distance null model proposed in Chapter 2 further and to apply

it to the shipping network. Cross-validation methods, such as those proposed by Leal

Cervantes in [10], could be used to assess the suitability of the model to the shipping

data.
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